06 January 2012

Boldly going where no space telescope has gone before: the James Webb

The James Webb Space Telescope (JWST) will go farther into space -- that “final frontier” -- and add to scientific knowledge in ways no previous space telescope has done before.

Even before the telescope's completion and launch, the process of developing its sensors and other technology is already having an impact in fields such as laser eye surgery and manufacturing.

Check out these new SPIE Newsroom videos to hear first-hand from NASA scientists Joe Howard and Lee Feinberg about JWST and how work on the telescope will, as Feinberg says, continue to “serve humanity for a long time.”

First, Joe Howard: "JWST blazes new trails in optical design."

And next, Lee Feinberg: "JWST technologies already bearing fruit."

Read more about the project on the NASA JWST website.

How many innovations do you use every day that began as space technologies?

04 January 2012

Hands-on science: chemicals required

Cover of a 1950s-era chemistry set, as featured in an EDN blog by Paul Rako.
Do you know a child who is the proud possessor of a science kit? As much as you may love the idea of kids playing with science, maybe you shouldn’t feel too excited for them. As Paul Rako noted in a recent  EDN blog (“When kids really had fun with science”), today’s kits are not what they used to be. For example, one of the illustrations in his blog shows a newer chemistry kit proclaiming that it contains “no chemicals”!

Actually, after reading in Paul’s blog and his reader’s comments about what one could do with 1950s-era kits, it’s clear that while today’s kits have less potential for pyrotechnics and high-voltage excitement, that might be a good thing in some ways.

But it also brings to mind some comments made last summer by Marc Nantel, Associate Vice President of Niagara Research at Niagara College Canada, a Senior Member of SPIE, the international society for optics and photonics, and Chair of the Society's Education Committee. Marc is dedicated to advancing photonics R&D, and also very dedicated to advancing photonics education and STEM education (science, technology, engineering, and mathematics) in general.

He is one of many educators who have become concerned about studies suggesting that the next generation is developing with inadequate skills in science and mathematics.

Marc noted that the fact that it is harder for young people to get a hands-on understanding of electronics these days doesn’t help. For example, he said, think of the old-style television or radio set. When it wasn’t working, you could take the back off and check the tubes or the wiring, and often figure out what needed fixing -- and then fix it, learning something about electronics in the process. You can’t do that with your new high-definition TV or your smartphone, not without already having the right diagnostic equipment and proper training.

So the chemistry kit may not come with chemicals, and a curious youngster can’t learn about electronics these days by taking them apart. Nonetheless, Paul Rako’s readers’ comments offered some interesting ideas about how to learn about science, with varying levels of hazard and ingenuity.

How did you explore science as a child? What sort of homegrown opportunities do today’s kids to have fun with science these days?