Pages

04 April 2014

Brain-mapping milestone -- with photonics, of course!

For 10 years since its founding, the Allen Institute for Brain Science in Seattle has been working toward a greater understanding of the brain, "inspired by the quest to uncover the essence of what makes us human," according to its website. It's a timely quest, given the "big neuroscience" efforts around the world -- including the Human Brain Project in Europe and the BRAIN Initiative in the United States.

SPIE Newsroom video interview with Michael Hawrylycz
People are working on many fronts to learn about the brain and treat its injuries and disorders. Photonics is a key tool in this effort. A recent SPIE Newsroom visit to the institute resulted in this video interview with Michael Hawrylycz, an investigator and director of the Modeling, Analysis, and Theory Group.

If you haven't seen the video, it's worth a look in light of the publication, on the one-year anniversary of President Obama's announcement of the BRAIN Initiative, of two papers in Nature reporting on significant milestones -- brain maps. Hawrylycz describes the brain map and the photonic tools used to develop it.

The papers highlight the Allen Institute's groundbreaking work to produce and share the BrainSpan Atlas of the Developing Human Brain prenatal data, and the Allen Mouse Brain Connectivity Atlas.

Understanding what makes humans unique involves deciphering a complex puzzle -- one that begins during the earliest phases of development. The richness of the BrainSpan Atlas gives scientists a new set of tools to assess how the human brain develops compared to other species. It's a detailed map of where different genes are turned on and off during mid-pregnancy at unprecedented anatomical resolution. The BrainSpan Atlas enables researchers around the world to conduct research and ask questions about the early human brain that many would not be able to do otherwise.

The mouse brain’s 75 million neurons, arranged in a roughly similar structure to the human brain, provide a powerful model system by which to understand how nerve cells of the human brain connect, process and encode information. Scientists at the Allen Institute set out to create a wiring diagram of the brain -- also known as a “connectome” -- to illustrate short and long-range connections using genetically-engineered viruses that could trace and illuminate individual neurons.

In order to get a truly comprehensive view, scientists collected imaging data at resolutions smaller than a micrometer from more than 1,700 mouse brains, each of which was divided into 140 serial sections. Publication of this resource opens a world of possibilities for researchers to use this connective roadmap of the brain to make exciting new discoveries, since the data and tools are all publicly available through the Allen Brain Atlas portal.

Congratulations to everyone who played a role in this landmark achievement. We can't wait to see what the next decade brings in brain research.

No comments:

Post a Comment