Skip to main content

Photonics in solar, 3D, medicine, and more in the year's top stories

Photonics and optics continue to provide amazing new solutions for challenges such as better healthcare, new green energy sources and devices, and more efficient and capable manufacturing processes.

Every week, the SPIE Newsroom publishes several new reports from researchers about their latest work. Here’s a list (with links to the full articles) of just a few of the life-enhancing photonics advances reported this year from around the world.

FIFA live in 3D at the pub and in your living room

For the first time ever, this year’s World Cup audiences were able to watch some of the matches in real-time 3D without having to buy a ticket. The Federation International Football Association worked with Sony and its production partners to deliver two dozen of the 2010 FIFA World Cup matches held in South Africa, and several sports broadcast television stations in Australia, the UK, and the US broadcast matches in 3D as well. Gooooooaaaaal!

Moth’s eye suggests solution for solar and LED reflection

Ordered and disordered nanostructures with broadband antireflection properties can be used in solar cells, LEDs, and transparent glasses, reported researchers at Gwangju Institute of Science and Technology. The broadband and omnidirectional antireflection properties of the moth’s eye inspired the conformation of antireflective nanostructures (ARNSs) with promising uses in high-efficiency optical devices.

New algorithm for IR face recognition

Face recognition is a more natural, intuitive way to identify individuals, compared to other biometric authentication methods such as fingerprints, iris patterns, and voiceprint that generally rely on cooperation of the participants. Thermal IR offers a promising alternative for handling variations in face appearance caused by lighting changes, and facial expressions and poses, reported researchers at Concordia Institute for Information Systems Engineering. The team showed that IR-based algorithms have the potential to provide simpler and more robust solutions, improving performance in uncontrolled environments and combating deliberate attempts to obscure identity.

Microfluidics streamlines laboratory operations

Reducing the cost is expected to trigger a boom in lab-on-a-chip technology, and reusable or disposable paper chips may hold the key. Lab-on-a-chip technology -- more properly referred to as microfluidics -- has been making headlines since the 1990s when the U.S. Defense Advanced Research Projects Agency (DARPA) funded the technology in the hope of developing handheld sensors for hazardous materials and/or healthcare monitoring. Two important recent advances have helped move the field forward. One was the development of rapid prototyping systems using poly(dimethylsiloxane) (PDMS), at Harvard University, and another was the development of a microfluidic valve, at Stanford University.

A biologically inspired silicon vocal tract

Silicon models of the retina have been used in machine vision systems, and circuit models of the heart have been used to shed light on cardiac and circulatory malfunction. Silicon cochlea models have led to improved speech recognition in noise and low-power cochlear-implant processors for the deaf. Now, researchers at the National University of Singapore and Massachusetts Institute of Technology have developed the first integrated-circuit vocal tract using a physiological model of the human vocal tract combined with a bionic ear processor in a feedback speech-locked loop to synthesize speech.

What’s going on inside the body: biophotonics and OCT

The Research Laboratory of Electronics (RLE) at the Massachusetts Institute of Technology is looking at more ways to exploit the capabilities of optical coherence tomography (OCT) to see inside the body for diagnostics and treatment of medical conditions in the eyes, vascular system, and other tissues and organs. Jim Fujimoto talked about the latest developments and how clinical and engineering perspectives work together, in a video interview:


Popular posts from this blog

Hyperspectral imaging: defense technology transfers into commercial applications

Hyperspectral imaging, like many other of today's technologies, is moving into numerous commercial markets after developing and maturing in the defense sector. While still having a strong presence in defense applications, the technology is now used in chemical detection, food quality assurance and inspection, vegetation monitoring, and plant phenotyping, among others.
For more than 20 years, advances in spectral imaging have been on display at SPIE Defense + Commercial Sensing (DCS). The applications and capabilities of the technology have grown along with the conferences and exhibition at SPIE DCS.
The ability to see more than what is visible to the human eye has always been one of the goals of optical engineers. With hyperspectral imaging they have been able to achieve just that. By accessing the entire electromagnetic spectrum, the sensors are able to image a specific wavelength range, or spectral band, and combine images of multiple bands into one 3D scene.
Through analysis,…

Changing life as we know it: the Internet of Things and cyber-physical sensing

More than 20 billion Internet of Things (IoT) devices are expected to be deployed within the next few years; by 2025, this number may reach as much as 1 trillion connected devices. Driven by growth in cloud computing, mobile communications, networks of data-gathering actuators and sensors, and artificial intelligence with machine learning, this trend will change how we live our lives.
Already we live among connected devices in our homes.

Increasingly, we will also wear them, drive them, and monitor our health via the IoT. More businesses will build, ship, and design products and manage inventory with connected devices. In our cities, transportation, communications, and security infrastructure, and services such as water distribution and energy management will employ IoT applications. Farmers will find many uses, from insuring the health of livestock to increasing crop productivity.
Several conferences scheduled for SPIE Defense + Commercial Sensing 2018 (15 through 19 April in Orland…

Glass ceiling, sticky floor: countering unconscious bias in photonics

Who knew … until last year: Three African-American women working — in obscurity — for NASA as mathematicians played a vital role in the mission that sent astronaut John Glenn into orbit around Earth and brought him back again, in 1962.
Publication of Margot Lee Shetterly's book Hidden Figures and the subsequent release of the acclaimed 2016 film brought the story of the important roles played by Katherine Johnson, Dorothy Vaughan, and Mary Jackson to light for the first time for many.
While their story may have been little known for decades, struggles for opportunity and inclusion are familiar to many women and to members of under-represented minorities or other groups working to make a career in a STEM (science, technology, engineering, and mathematics) field.
Findings on gender equity from the latest SPIE Optics and Photonics Global Salary report indicate that women in the field lag behind men in salary and in representation in management and senior academic positions.
The cost…