Skip to main content

Photonics as you'll see it nowhere else

“Multidisciplinary” is a word heard often in photonics circles. It has become increasingly apt at SPIE Defense, Security, and Sensing (DSS), where, in the words of Michael Eismann (Air Force Research Lab), last year’s symposium chair, you’ll see things that you won’t find anywhere else. Just a few examples -- from among 2,400 papers in the program -- illustrate the span across not only several disciplines but varied application areas as well.

Cancer and brain trauma

From the growing body of presentations at DSS on biomedicine and sensing technologies with health applications is a paper by Krzysztof Ptak (U.S. National Cancer Institute Center for Strategic Scientific Initiatives) on nanotechnology as a “new pipeline” for cancer diagnostics, imaging agents, and therapies (8031-63).

“The National Cancer Institute has taken the bold and visionary step of recognizing that it takes a multidisciplinary approach allowing for a convergence of molecular biology, oncology, physics, chemistry, and engineering leading to the development of clinically worthy technological solutions for the most important medical challenge of our time, namely the conquest of cancer,” said Conference Chair Tom George (Zyomed Corp.).

George pointed out that the future applications of micro- and nanotechnology research are “essentially limitless” and applicable in aerospace, transportation, sports, entertainment, and agriculture, as well as medicine.

Another paper (8029A-21), by Edward Dixon (University of Pittsburgh), looks at biomarkers for more sensitive, portable, and rapid diagnostics, prognostics, and therapeutic monitoring of traumatic brain injury (TBI). TBI produced by repeated exposure to mild blasts is a signature injury of current wars, Dixon notes, and mild TBI produces subtle cognitive deficits that are difficult to detect and quantify.

Explosives and greenhouse gases

In the realm of lasers, Richard Miles, Arthur Dogariu, and James Michael (Princeton University) will present a paper (8024-16) on air lasing to detect trace particles in identifying buried explosives along a roadway, or airborne pollutants, and greenhouse gases. The work is the first demonstration of a practical air laser, Miles said. The process involves resonant two-photon dissociation of molecular oxygen and simultaneous resonant two-photon pumping of an atomic oxygen fragment.

Lasers at work

A paper by Jordin Kare and Tom Nugent (LaserMotive) (8045-40) will explain their work in developing laser power beaming systems to transmit electricity without wires, for application where wires are either cost-prohibitive or physically impossible. (See the article “Beam it up” published 10 March in The Economist for more on their work; view a video interview from the SPIE Newsroom below.)



Monitoring the oceans

A joint session on between conferences on Oil Sensing and Monitoring (8030) and Sensing for Global Health, Military Medicine, Disaster Response, and Environmental Monitoring is devoted to papers on sensing technologies used for tracking the Deepwater Horizon oil spill that began 20 April 2010.

"The session will highlight the coordinated efforts and responses of the meteorological and oceanographic community to describe the oceanographic impact of oil in the Gulf," said Weilin (Will) Hou (U.S. Naval Research Lab). Papers will examine assets used for monitoring which include remote sensing, in situ observations and models, and describe capabilities for monitoring the ocean processes in the gulf and their utilities for examining the oil spill impacts.

Comments

Popular posts from this blog

Hyperspectral imaging: defense technology transfers into commercial applications

Hyperspectral imaging, like many other of today's technologies, is moving into numerous commercial markets after developing and maturing in the defense sector. While still having a strong presence in defense applications, the technology is now used in chemical detection, food quality assurance and inspection, vegetation monitoring, and plant phenotyping, among others.
For more than 20 years, advances in spectral imaging have been on display at SPIE Defense + Commercial Sensing (DCS). The applications and capabilities of the technology have grown along with the conferences and exhibition at SPIE DCS.
The ability to see more than what is visible to the human eye has always been one of the goals of optical engineers. With hyperspectral imaging they have been able to achieve just that. By accessing the entire electromagnetic spectrum, the sensors are able to image a specific wavelength range, or spectral band, and combine images of multiple bands into one 3D scene.
Through analysis,…

Changing life as we know it: the Internet of Things and cyber-physical sensing

More than 20 billion Internet of Things (IoT) devices are expected to be deployed within the next few years; by 2025, this number may reach as much as 1 trillion connected devices. Driven by growth in cloud computing, mobile communications, networks of data-gathering actuators and sensors, and artificial intelligence with machine learning, this trend will change how we live our lives.
Already we live among connected devices in our homes.

Increasingly, we will also wear them, drive them, and monitor our health via the IoT. More businesses will build, ship, and design products and manage inventory with connected devices. In our cities, transportation, communications, and security infrastructure, and services such as water distribution and energy management will employ IoT applications. Farmers will find many uses, from insuring the health of livestock to increasing crop productivity.
Several conferences scheduled for SPIE Defense + Commercial Sensing 2018 (15 through 19 April in Orland…

Glass ceiling, sticky floor: countering unconscious bias in photonics

Who knew … until last year: Three African-American women working — in obscurity — for NASA as mathematicians played a vital role in the mission that sent astronaut John Glenn into orbit around Earth and brought him back again, in 1962.
Publication of Margot Lee Shetterly's book Hidden Figures and the subsequent release of the acclaimed 2016 film brought the story of the important roles played by Katherine Johnson, Dorothy Vaughan, and Mary Jackson to light for the first time for many.
While their story may have been little known for decades, struggles for opportunity and inclusion are familiar to many women and to members of under-represented minorities or other groups working to make a career in a STEM (science, technology, engineering, and mathematics) field.
Findings on gender equity from the latest SPIE Optics and Photonics Global Salary report indicate that women in the field lag behind men in salary and in representation in management and senior academic positions.
The cost…