Skip to main content

Water, water, everywhere: photonics can make sure it’s fit to drink

Do you have ready access to clean drinking water?
That isn’t something everyone around the planet can take for granted. More than a billion people do not have access to clean water, and around 1.5 million children die each year as a result of water-borne diseases.
Several projects we’ve heard about recently are employing photonics technologies to change this picture and save lives.
  • A European Union research consortium is working on a compact, low-cost photocatalytic water treatment system that uses photons from sunlight to decompose organic pollutants in water. The completed system will resemble rooftop solar panels, and will be placed on dwellings near ponds and streams with poor water quality. It will require no electricity or chemicals, so will be well-suited to developing regions – and sustainable, wherever it is installed. Funded by an EU Seventh Framework Programme grant ,the consortium includes groups from Denmark, France, Italy, Israel, Jordan, South Africa, and the UK.
  • Among the scientists involved in the EU project  are several at Tel Aviv University, where a number of far-reaching water research efforts are in play. Dror Avisar and Hadas Mamane have initiated a planned water research center where the main goal will be to improve water reclamation methods, using new technologies the remove pesticides and other chemicals.
  • A program at the University of Rochester has spun up a business plan for a new company with the goal of building inexpensive solar-powered water pumps to provide drinking and irrigation water in off-grid locations in drought-prone regions. Partners in the proposed venture are Daniel Williams, a doctoral student at the Institute of Optics; Awak Malith, a UR physics graduate who fled war-torn Sudan as a child; and Chilean business students Roberto Chavarria (a civil engineer) and Paul Oyaneder (a social psychologist).

Awak Malith (center) on a visit last year to Sudan.

  • Researchers at the Fraunhofer Institutes have developed a bio-sensor that reacts to a wide range of potentially hazardous substances in just a few minutes, enabling constant, real-time monitoring of drinking water. The system can detect substances such as cyanide, ricin, or toxic metabolic products from bacteria that can be fatal even in concentrations of nanograms per liter. Among those working on the project at Fraunhofer are Iris Trick (Institute for Interdisciplinary Engineering and Biotechnology-IGB) and Thomas Bernard (Institute of Optronics, System Technologies and Image Exploitation-IOSB). Also participating are researchers at project partner Moldaenke. 
You can learn more about the world’s water problems from several sources. Among them are:
And maybe you have ideas for more solutions?



Comments

  1. I was browsing the internet for pumps related blogs to comment and I came across yours. I've read this article and I have here the excerpt of that piece which I believe is true and humane. It says: "Expanding access to water and sanitation is a moral and ethical imperative rooted in the cultural and religious traditions of communities around the world. Dignity, equity, compassion and solidarity are values shared all over the world. Extending water supply and sanitation services to poor households would largely contribute to promoting them. The Right to Water, recently proclaimed by the United Nations, (General Comment No 15, 2002), is said to be "indispensable for leading a life in human dignity" and "a prerequisite for the realization of other human rights."

    ReplyDelete

Post a Comment

Popular posts from this blog

#FacesofPhotonics: Inspired

Guest blogger: Emily Power is a Winter Quarter graduate in communications from Western Washington University, and most recently social media intern for SPIE, the international society for optics and photonics. She is blogging on responses to the SPIE #FacesofPhotonics campaign, to share the stories of SPIE students around the globe.
It is a commonly known fact: students are the future. Around the world, students with ideas, opinions, and innovative minds are preparing for their opportunities to conceptualize and create the next advances for the ever-changing world in which we live.
In the field of optics and photonics, students are making a difference even now, sharing their work and building their networks through conferences such as SPIE Photonics West, coming up next month in San Francisco.
The SPIE campaign #FacesofPhotonics was developed as a showcase across social media to connect students from SPIE Student Chapters around the world, highlighting similarities, celebrating differ…

Grilling robot takes over backyard barbecue

Photonics has already made profound contributions to such areas as medicine, energy, and communications to make our everyday lives more efficient. (Hence the name of this blog.) People in all walks of life benefit from the incorporation of photonics technologies. We look forward to future advancements when the technology may help find a cure for cancer, monitor and prevent climate change, and pave the way to other advancements we can’t even visualize yet.
But here’s a photonics-based invention -- already demonstrated – that breaks ground in a new area: the backyard barbecue. Talk about hot fun in the summertime!
The BratWurst Bot made its appearance at the Stallwächter-Party of the Baden-Württemberg State Representation in Berlin. It’s made of off-the-shelf robotic components such as the lightweight Universal Robots arm UR-10, a standard parallel gripper (Schunk PG-70) and standard grill tongs. A tablet-based chef’s face interacted with party guests.
Two RGB cameras and a segmentatio…

UPDATE! Gravitational waves ... detected!

Update, 11 February: A hundred years after Einstein predicted them, gravitational waves from a cataclysmic event a billion years ago have been observed.
For the first time, scientists have observed gravitational waves, ripples in the fabric of spacetime arriving at Earth from a cataclysmic event in the distant universe. This confirms a major prediction of Albert Einstein's 1915 general theory of relativity and opens an unprecedented new window to the cosmos.
The discovery was announced on 11 February at a press conference in Washington, DC, hosted by the National Science Foundation, the primary funder of the Laser Interferometer Gravitational Wave Observatory (LIGO).
The gravitational waves were produced during the final fraction of a second of the merger of two black holes to produce a single, more massive spinning black hole. This collision of two black holes had been predicted but never observed.
The event took place on 14 September 2015 at 5:51 a.m. EDT (09:51 UTC) by both of…