Skip to main content

Ideas from the photonics lab can improve -- and even save -- lives

We’re living in the Century of the Photon, and examples of the important roles the enabling technology of photonics and optics play in our lives are everywhere.

For examples, start with computers and the internet.

SPIE Fellow John Greivenkamp, professor of optics at the University of Arizona College of Optical Sciences, talks about the optical technologies inherent in those applications in this brief video.



A list of 50 breakthroughs contributed by researchers at America’s national labs has been compiled in a brochure published by the U.S. Department of Energy, and posted in a PDF on their website. Among the list:



  • From learning about photosynthesis came the ability to explore how to derive sustainable energy from the sun.
  • An engineered particle removes arsenic from drinking water, and an ultraviolet-light system kills microbes that cause water-borne diseases.
  • A revolution in medicine that has saved many lives with cancer-detecting nuclear imaging devices came out of development of the scintillation camera to detect gamma rays emitted by radioactive isotopes.
We heard about the brochure through the Berkeley Lab, which noted that a second printing is planned for distribution to Members of Congress and others -- great idea!

Photonics has a positive impact on the economy as well. The recently published Photonics21 Vision for a Key Enabling Technology of Europe report estimates the annual growth rate of the photonics sector at more than 10% -- several times faster than other sectors of the global economy.

Look for gentler, more effective healthcare; low-energy solid-state lighting; a greener environment protected by better pollution control; and much more: brought to you by photonics!

Comments

Popular posts from this blog

Ten Ways to Celebrate the first International Day of Light

The first International Day of Light (IDL) is less than a month away. A global initiative highlighting the importance of light and light-based technologies, communities around the world are planning events celebrating IDL on 16 May. First Place Winner of the 2017 SPIE IDL Photo Contest SPIE will participate in outreach events local to our community in Bellingham, Washington, attend the inauguration in Paris, France, and host an IDL reception for our conference attendees at SPIE Optical Systems Design in Frankfurt, Germany taking place May 14-17. SPIE is also supporting local events in 13 different communities from the US to India, Canada to South Africa, who were awarded SPIE IDL Micro Grants to create activities that highlight the critical role light plays in our daily lives. Do you need some ideas on how to show your appreciation of light on the 16th? Here is our top ten list of ways you can celebrate IDL 2018: 1. Throw a Celebration:  Light up your party with ligh...

Cataract surgery: misnomer?

On left, the patient’s left eye has no cataract and all structures are visible. On right, retinal image from fundus camera confirms the presence of a cataract. (From Choi, Hjelmstad, Taibl, and Sayegh, SPIE Proc. 85671Y , 2013)   Article by guest blogger Roger S. Reiss , SPIE Fellow and recipient of the 2000 SPIE President's Award. Reiss was the original Ad Hoc Chair of SPIE Optomechanical Working Group. He manages the LinkedIn Group “ Photonic Engineering and Photonic Instruments .” The human eye and its interface with the human brain fit the definition of an "instrument system."   The human eye by itself is also an instrument by definition. After the invention of the microscope and the telescope, the human eye was the first and only detector for hundreds of years, only to be supplemented and in most cases supplanted by an electro-optical detector of various configurations. The evolution of the eye has been and still is a mystery.   In National Geogr...

#FacesofPhotonics: NASA Intern Elaine Stewart

MIRROR, MIRROR: Elaine with the JWST at Goddard Space  Flight Center in Greenbelt, Maryland Meet Elaine Stewart: chemical engineering student, world-traveler, intern at NASA's Goddard Space Flight Center, and this week's SPIE Face of Photonics. Elaine is fascinated by space exploration and how optics impacts our ability to "study distant stars that have never been seen before." Her research has taken her around the world -- from Bochum, Germany, where she studied material science and engineering at Ruhr-Universität, to Houston, Texas, to work on the James Webb Space Telescope (JWST) while it was under cryogenic vacuum chamber testing, to Melbourne, Australia, where she studied biochemical and product engineering at the University of Melbourne in 2017. And, when she's not busy traversing the globe, she is focusing on graduating from the University of Delaware in 2019 with a Bachelor's in Chemical Engineering. Elaine makes a point of remaining an active...