Skip to main content

Photonics erase a hindering past

Light is now enabling equal opportunity employment.

In Orange County, California, Judge David Carter has been supporting a program to remove tattoos in order to help convicted offenders to successfully re-enter community and get started on a positive path. The breakthrough will allow them to advance without telltale evidence of a hindering past.

The program, run by Stuart Nelson, Medical Director at the Beckman Laser Institute, University of California-Irvine, has already received kudos from the U.S. Probation Service in Orange County. The process employs laser light to fragment the ink particles so that they are carried away through the body’s immune system.

“This is particularly important to these clients because as they’re trying to re-enter society, acquire a job, establish a new identity and a new career, the stigma associated with having a tattoo can often inhibit that,” Nelson said.

Nelson said they’re fortunate in that most of their clients come with the popular dark blue and black inks that are easily removed by lasers. Removal can be problematic when facing chemical components called organometallic dyes, used to make colored inks.

Nelson has worked with about two dozen probationers so far, removing tattoos located on hands, lower arms and necks.

Nelson’s research focuses on laser and other biomedical optics techniques with applications such as port wine stain removal, noninvasive monitoring of blood with external probes for use by people with diabetes or for monitoring blood sugar in surgery to monitor anesthetics, cancer diagnostics and treatment, and many other life-saving, life-enhancing light-based technologies. See more in this SPIE Newsroom video interview:


Comments

Popular posts from this blog

Changing life as we know it: the Internet of Things and cyber-physical sensing

More than 20 billion Internet of Things (IoT) devices are expected to be deployed within the next few years; by 2025, this number may reach as much as 1 trillion connected devices. Driven by growth in cloud computing, mobile communications, networks of data-gathering actuators and sensors, and artificial intelligence with machine learning, this trend will change how we live our lives.
Already we live among connected devices in our homes.

Increasingly, we will also wear them, drive them, and monitor our health via the IoT. More businesses will build, ship, and design products and manage inventory with connected devices. In our cities, transportation, communications, and security infrastructure, and services such as water distribution and energy management will employ IoT applications. Farmers will find many uses, from insuring the health of livestock to increasing crop productivity.
Several conferences scheduled for SPIE Defense + Commercial Sensing 2018 (15 through 19 April in Orland…

Hyperspectral imaging: defense technology transfers into commercial applications

Hyperspectral imaging, like many other of today's technologies, is moving into numerous commercial markets after developing and maturing in the defense sector. While still having a strong presence in defense applications, the technology is now used in chemical detection, food quality assurance and inspection, vegetation monitoring, and plant phenotyping, among others.
For more than 20 years, advances in spectral imaging have been on display at SPIE Defense + Commercial Sensing (DCS). The applications and capabilities of the technology have grown along with the conferences and exhibition at SPIE DCS.
The ability to see more than what is visible to the human eye has always been one of the goals of optical engineers. With hyperspectral imaging they have been able to achieve just that. By accessing the entire electromagnetic spectrum, the sensors are able to image a specific wavelength range, or spectral band, and combine images of multiple bands into one 3D scene.
Through analysis,…

Glass ceiling, sticky floor: countering unconscious bias in photonics

Who knew … until last year: Three African-American women working — in obscurity — for NASA as mathematicians played a vital role in the mission that sent astronaut John Glenn into orbit around Earth and brought him back again, in 1962.
Publication of Margot Lee Shetterly's book Hidden Figures and the subsequent release of the acclaimed 2016 film brought the story of the important roles played by Katherine Johnson, Dorothy Vaughan, and Mary Jackson to light for the first time for many.
While their story may have been little known for decades, struggles for opportunity and inclusion are familiar to many women and to members of under-represented minorities or other groups working to make a career in a STEM (science, technology, engineering, and mathematics) field.
Findings on gender equity from the latest SPIE Optics and Photonics Global Salary report indicate that women in the field lag behind men in salary and in representation in management and senior academic positions.
The cost…