Skip to main content

Hands-on science: chemicals required

Cover of a 1950s-era chemistry set, as featured in an EDN blog by Paul Rako.
Do you know a child who is the proud possessor of a science kit? As much as you may love the idea of kids playing with science, maybe you shouldn’t feel too excited for them. As Paul Rako noted in a recent  EDN blog (“When kids really had fun with science”), today’s kits are not what they used to be. For example, one of the illustrations in his blog shows a newer chemistry kit proclaiming that it contains “no chemicals”!

Actually, after reading in Paul’s blog and his reader’s comments about what one could do with 1950s-era kits, it’s clear that while today’s kits have less potential for pyrotechnics and high-voltage excitement, that might be a good thing in some ways.

But it also brings to mind some comments made last summer by Marc Nantel, Associate Vice President of Niagara Research at Niagara College Canada, a Senior Member of SPIE, the international society for optics and photonics, and Chair of the Society's Education Committee. Marc is dedicated to advancing photonics R&D, and also very dedicated to advancing photonics education and STEM education (science, technology, engineering, and mathematics) in general.

He is one of many educators who have become concerned about studies suggesting that the next generation is developing with inadequate skills in science and mathematics.

Marc noted that the fact that it is harder for young people to get a hands-on understanding of electronics these days doesn’t help. For example, he said, think of the old-style television or radio set. When it wasn’t working, you could take the back off and check the tubes or the wiring, and often figure out what needed fixing -- and then fix it, learning something about electronics in the process. You can’t do that with your new high-definition TV or your smartphone, not without already having the right diagnostic equipment and proper training.

So the chemistry kit may not come with chemicals, and a curious youngster can’t learn about electronics these days by taking them apart. Nonetheless, Paul Rako’s readers’ comments offered some interesting ideas about how to learn about science, with varying levels of hazard and ingenuity.

How did you explore science as a child? What sort of homegrown opportunities do today’s kids to have fun with science these days?

Comments

Popular posts from this blog

#FacesofPhotonics: Rising Researcher Alina Zare

SPIE's #FacesofPhotonics is sharing the story of Alina Zare, Associate Professor at the The Machine Learning and Sensing Lab at the University of Florida. Dr. Zare was recognized as a 2018 Rising Researcher for her work in Electronic Imaging & Signal Processing, at the SPIE Defense + Commercial Sensing conference.

This program recognizes early career professionals who conduct outstanding research in the defense, commercial, and scientific sensing, imaging, optics, or related fields. If you want to learn more about the program, the details are here.

Enjoy the interview with Alina!

1. Tell us about when you first became interested in optics and photonics. In my senior year of  undergraduate studies in computer science, I was taking an Image Processing elective.  I really enjoyed the course, and the professor for the class, Dr. Gerhard Ritter, encouraged me to do some undergraduate research.  
So I joined Dr. Paul Gader's research lab as a undergraduate researcher where I he…

#FacesofPhotonics: Optimax Director of Technology and Strategy, Jessica DeGroote Nelson

SPIE Senior Member Jessica DeGroote Nelson works as the director of technology and strategy at Optimax Systems in Ontario, New York. She also teaches as an adjunct assistant professor at The Institute of Optics at the University of Rochester (UR), and is a Conference Chair for SPIE Optifab 2019. 
This year at SPIE Optics + Photonics in San Diego, Nelson will be teaching Optical Materials, Fabrication, and Testing for the Optical Engineer. This course is geared toward optical engineers who are hoping to learn the basics about how optics are made, and ways in which to help reduce the cost of the optics they are designing. 
"Optical tolerancing and the cost to fabricate an optic can be a point of tension or confusion between optical designers and optical fabricators," Nelson says. "I teach this course to help give optical designers who are new to the field a few tools in their toolbelt as they navigate tolerancing and purchasing some of their first designs. One of the thi…

#FacesofPhotonics: Photovoltaics PhD Student Arfa Karani

Meet this week's SPIE Faces of Photonics feature, Arfa Karani. Arfa is a physics PhD student at the University of Cambridge, studying the physics of solar cells. She is originally from India, but has lived outside her home country for many years while pursuing her education. 

Arfa was also President of the SPIE Student Chapter at the University of Cambridge in 2017-18, and continues to remain involved with the chapter when she's not hard at work in the university's Cavendish Lab.


Enjoy her interview!




1. How did you become interested in the optics and photonics field? Was there a person who inspired you?

My physics teacher at school inspired me. I got interested in studying optics because my curiosity was satisfied by this teacher, who was extremely enthusiastic about what they did. When you ask too many questions as a child, people try to divert your attention once they are tired of answering. Not this teacher.

I know it’s a bit cliché, but I was amazed by how one could cre…