Skip to main content

Irony of eco-metamaterials

Eco-metamaterials engineered by optics and photonics researchers can lighten our environmental footprint and just may be -- ironically -- more sustainable than materials found in nature.

So say Nerac analysts Rosemarie Szostak and Michael Kapralos in their article in the July 2012 issue of SPIE Professional magazine.

Metamaterials combine micro or nano structural features instead of relying on composition alone to achieve the desired properties. They have sparked the imagination of the optics and photonics community with their unusual characteristics, and researchers are developing unique metamaterials for their potential as invisibility cloaks, high-efficiency photovoltaics, super-antennas, and ultrabright LEDs.

Eco-metamaterials may not yet be "green" based on their composition. However, the reduced quantities of materials, especially toxic ones, used in their development and metamaterials’ inherent potential for exotic properties allow technologists to improve outcomes well beyond what is found in nature.

The Nerac analysts discuss how developers are "right sizing" their products with metamaterials and taking advantage of metamaterials' inherently small sizes. 


One potentially sustainable advancement in metamaterials that they discuss is with lasers. "The ability to tailor structure and locate elements in precise arrangements in metamaterials may lie in the exactness afforded by laser technology," they say.

Bolstered by research done at Oak Ridge National Laboratory in the United States, the National Institute for Laser, Plasma and Radiation Physics in Romania, and labs elsewhere, lasers have been shown to be effective in depositing thin films of elements, creating nanostructures efficiently.

Since lasing usually exacts a high energy cost, laser researchers are now pushing the scale of lasers to new lows (nano) while maintaining or improving power. At University of California, San Diego, California, for instance, lasers are being downsized so that they require very little power to operate. The small size and extremely low power of these nanolasers have the potential to revolutionize future optical circuits and allow metamaterial manufacturers to produce better, cheaper, and smaller energy-footprint components, a much more sustainable manufacturing process.

The SPIE Professional article also discusses work conducted at ARPA-E (the U.S. Department of Energy's innovation arm) on constructing nanomagnet assemblages with soft and hard magnetic components that use less neodymium, or none at all, yet maintain the strength and permanence of a traditional neo-magnet.

Metamaterials conference in San Diego


Metamaterials will be the subject of a symposium-wide plenary talk and a full conference at SPIE Optics and Photonics, 12-16 August in San Diego. Nearly 100 technical presentations are scheduled for the Metamaterials: Fundamentals and Applications conference within the NanoScience and Engineering symposium.

SPIE Fellow Allan Boardman of University of Salford will chair the conference, which will cover nanoantennas, cloaking, and related topics such as:
  • Nonlinear metamaterials
  • Plasmonic metamaterials
  • Magnetic metamaterials
  • Metamaterial absorbers
  • Chiral metamaterials
  • Active and tunable metamaterials
At the symposium-wide plenary session on 12 August, Vladimir Shalaev, scientific director for nanophotonics at Purdue University, will review this growing field in a talk titled “The Exciting Science of Light with Metamaterials.” Shalaev, an SPIE Fellow, will also discuss recent developments in such areas as tunable metamaterials, artificial optical magnetism, and nanolasers.

Comments

Popular posts from this blog

Ten Ways to Celebrate the first International Day of Light

The first International Day of Light (IDL) is less than a month away. A global initiative highlighting the importance of light and light-based technologies, communities around the world are planning events celebrating IDL on 16 May. First Place Winner of the 2017 SPIE IDL Photo Contest SPIE will participate in outreach events local to our community in Bellingham, Washington, attend the inauguration in Paris, France, and host an IDL reception for our conference attendees at SPIE Optical Systems Design in Frankfurt, Germany taking place May 14-17. SPIE is also supporting local events in 13 different communities from the US to India, Canada to South Africa, who were awarded SPIE IDL Micro Grants to create activities that highlight the critical role light plays in our daily lives. Do you need some ideas on how to show your appreciation of light on the 16th? Here is our top ten list of ways you can celebrate IDL 2018: 1. Throw a Celebration:  Light up your party with light an

Cataract surgery: misnomer?

On left, the patient’s left eye has no cataract and all structures are visible. On right, retinal image from fundus camera confirms the presence of a cataract. (From Choi, Hjelmstad, Taibl, and Sayegh, SPIE Proc. 85671Y , 2013)   Article by guest blogger Roger S. Reiss , SPIE Fellow and recipient of the 2000 SPIE President's Award. Reiss was the original Ad Hoc Chair of SPIE Optomechanical Working Group. He manages the LinkedIn Group “ Photonic Engineering and Photonic Instruments .” The human eye and its interface with the human brain fit the definition of an "instrument system."   The human eye by itself is also an instrument by definition. After the invention of the microscope and the telescope, the human eye was the first and only detector for hundreds of years, only to be supplemented and in most cases supplanted by an electro-optical detector of various configurations. The evolution of the eye has been and still is a mystery.   In National Geogr

#FacesofPhotonics: NASA Intern Elaine Stewart

MIRROR, MIRROR: Elaine with the JWST at Goddard Space  Flight Center in Greenbelt, Maryland Meet Elaine Stewart: chemical engineering student, world-traveler, intern at NASA's Goddard Space Flight Center, and this week's SPIE Face of Photonics. Elaine is fascinated by space exploration and how optics impacts our ability to "study distant stars that have never been seen before." Her research has taken her around the world -- from Bochum, Germany, where she studied material science and engineering at Ruhr-Universität, to Houston, Texas, to work on the James Webb Space Telescope (JWST) while it was under cryogenic vacuum chamber testing, to Melbourne, Australia, where she studied biochemical and product engineering at the University of Melbourne in 2017. And, when she's not busy traversing the globe, she is focusing on graduating from the University of Delaware in 2019 with a Bachelor's in Chemical Engineering. Elaine makes a point of remaining an active