Skip to main content

‘Golden Geese’ and essential technologies: optics and photonics!

Photonics enjoyed the spotlight in Washington, D.C., last week

First, on Wednesday morning leaders from the optics and photonics community give an enthusiastic launch to the new National Research Council report “Optics and Photonics, Essential Technologies for Our Nation,” aided by Secretary of Energy Steven Chu and former Intel CEO Craig Barrett.

Chu and Barrett were featured speakers at a briefing for agency leaders. Their remarks included references to several important benefits enabled by photonics:
  • economic strength
  • sustainable energy sources
  • new methods for medical detection and treatment of diseases and chronic conditions
  • more efficient lighting, computing, manufacturing, automobiles, and very much more.
Wednesday afternoon, the House R&D caucus heard from leaders of four societies in the sector about the report’s findings on economic impacts of optics and photonics, the importance of improved STEM education, and the committee’s recommendations on particular technology directions.

The Goose that Laid the Golden Eggs; Milo Winter
"The Goose that Laid the Golden Eggs,"
illustrated by Milo Winter in 1919.
Then, on Thursday, came the Golden Goose Awards.

If you’re familiar with European folklore, you’ll recall two stories related to gold and geese. In one, a goose lays eggs of gold that bring her owner wealth; in another, a goose with golden feathers helps secure a poor peasant lad the life of a happily married king.

But the name of these awards actually is related to a bit of 20th-century Americana.

In the 1970s and ‘80s, a U.S. Senator named William Proxmire instituted what he called the “Golden Fleece” awards to call out what he considered to be research projects of dubious value.

The problem with such judgments is that it isn’t necessarily clear what the ultimate value of research will be -- what looks dubious today may save lives tomorrow, in fact.

Enter the Golden Goose Awards. Initiated by U.S. Representative Jim Cooper and supported by several scientific and educational associations and institutes, the awards celebrated "researchers whose seemingly odd or obscure federally funded research turned out to have a significant impact on society," in the words of the organizers.

The winners of the first Golden Goose Awards are excellent examples -- and not surprisingly, optics and photonics were central to all three efforts:
  • Charles Townes ,a physicist whose work in the 1950s led to the invention of laser technology, which at the time had no known application and was even called “a solution in search of a problem,” but without which much of modern technology would be impossible. His work earned him a Nobel Prize in 1964, along with Russian researchers Aleksandr Prokhorov and Nicolay Basov.
  • Eugene White, Rodney White, Della Roy, and the late Jon Weber, whose study of tropical coral in the 1960s led serendipitously to the development of an ideal material for bone grafts and prosthetic eyes that is used commonly today.
  • Martin Chalfie, Roger Tsien, and Osamu Shimomura, whose research, following Dr. Shimomura’s work on how certain jellyfish glow in the dark, led to numerous medical research advances and to methods used widely by the pharmaceutical and biotechnology industries. They won the Nobel Prize for Chemistry in 2008.
Also not surprising: The same agencies who funded research on the maser, green fluorescent protein, and coralline ceramics were among those with representatives in the room Wednesday  for the launch of the new NRC report.

As SPIE CEO Eugene Arthurs noted at the caucus briefing, "Opportunity calls, and its name is 'photonics'."

Hear in their own words what two speakers had to say about the NRC report “Optics and Photonics, Essential Technologies for Our Nation” in this brief video:


.

Comments

Popular posts from this blog

Hyperspectral imaging: defense technology transfers into commercial applications

Hyperspectral imaging, like many other of today's technologies, is moving into numerous commercial markets after developing and maturing in the defense sector. While still having a strong presence in defense applications, the technology is now used in chemical detection, food quality assurance and inspection, vegetation monitoring, and plant phenotyping, among others.
For more than 20 years, advances in spectral imaging have been on display at SPIE Defense + Commercial Sensing (DCS). The applications and capabilities of the technology have grown along with the conferences and exhibition at SPIE DCS.
The ability to see more than what is visible to the human eye has always been one of the goals of optical engineers. With hyperspectral imaging they have been able to achieve just that. By accessing the entire electromagnetic spectrum, the sensors are able to image a specific wavelength range, or spectral band, and combine images of multiple bands into one 3D scene.
Through analysis,…

Changing life as we know it: the Internet of Things and cyber-physical sensing

More than 20 billion Internet of Things (IoT) devices are expected to be deployed within the next few years; by 2025, this number may reach as much as 1 trillion connected devices. Driven by growth in cloud computing, mobile communications, networks of data-gathering actuators and sensors, and artificial intelligence with machine learning, this trend will change how we live our lives.
Already we live among connected devices in our homes.

Increasingly, we will also wear them, drive them, and monitor our health via the IoT. More businesses will build, ship, and design products and manage inventory with connected devices. In our cities, transportation, communications, and security infrastructure, and services such as water distribution and energy management will employ IoT applications. Farmers will find many uses, from insuring the health of livestock to increasing crop productivity.
Several conferences scheduled for SPIE Defense + Commercial Sensing 2018 (15 through 19 April in Orland…

Glass ceiling, sticky floor: countering unconscious bias in photonics

Who knew … until last year: Three African-American women working — in obscurity — for NASA as mathematicians played a vital role in the mission that sent astronaut John Glenn into orbit around Earth and brought him back again, in 1962.
Publication of Margot Lee Shetterly's book Hidden Figures and the subsequent release of the acclaimed 2016 film brought the story of the important roles played by Katherine Johnson, Dorothy Vaughan, and Mary Jackson to light for the first time for many.
While their story may have been little known for decades, struggles for opportunity and inclusion are familiar to many women and to members of under-represented minorities or other groups working to make a career in a STEM (science, technology, engineering, and mathematics) field.
Findings on gender equity from the latest SPIE Optics and Photonics Global Salary report indicate that women in the field lag behind men in salary and in representation in management and senior academic positions.
The cost…