Skip to main content

Why bother with STEM ed?

Experts in STEM education (science, technology, education, and mathematics) point out that in teaching, the “how” of science is more important that the “what.” As Shannon Warren, director of a science education partnership grant program in Washington State, noted in a recent magazine feature, learning science means exploring and analyzing, not just memorizing facts and listening to lectures.

The “why” is an equally key question, and one that evokes very personalized responses.
Professor Jin Kang in his lab at Johns Hopkins University
Take Jin Kang’s story, for example. Twenty years ago, Kang was an undergraduate physics student discovering that while he found the theory behind optics and photonics interesting, what he really loved was building lasers and other optical devices.

Kang is now a professor and the chair of the Electrical and Computer Engineering Department at Johns Hopkins University. He conducts research in biophotonics, fiber optics, and optoelectronic devices for applications in medicine and communications.

One of his primary areas of focus areas is developing 3D imaging and sensing systems for guided surgical intervention. He described one of his latest devices ― a “smart” tool with sensors to help guide the surgeon’s eye and hand in microsurgery in a recent SPIE Newsroom video interview.

“I got into optics because I had two great professors,” Kang said. “Under their supervision I built a pulsed ruby laser for holography and other optical devices, which was an indispensable experience that taught me the fundamentals. It made me really appreciate the science."


Photonics enables entertainment, too:
The Grammy-nominated 3D music video
"All Is Not Lost" by OK Go featuring
the dance group Pilobolus was among
presentations shown at the 3D cinema
session at IS&T/SPIE Electronic Imaging

2012 in January in San Francisco, California,
USA. (Photo provided by Eric Kurland, 3D
director and editor of the video.)
The question of “why teach science” also is one with huge implications. Here are just a few answers:

  • Smarter voters, better government: “Exploring and analyzing” defines independent, fact-based thinking ― the driver behind developments such as the polio vaccine, life-saving AIDS treatments, and harnessing solar energy as well as a requirement for healthy democratic government.
  • Jobs: Education is inextricably linked to innovation, and innovation in high technology creates jobs, a message clearly spelled out in the National Research Council report “Optics and Photonics, Essential Technologies for Our Nation,” and the Photonics21 report “Photonics – Our Vision for a Key Enabling Technology of Europe.”
  • Longer, safer, healthier lives: Science solves important problems, such as detecting infrastructure flaws so repairs can be made before a bridge collapses, or identifying exactly where plaque is clogging arteries to aid the surgical team in extending both quality and length of the patient’s life, for just two of thousands of possible examples.

Say it with lasers: Students are experts at sharing photonics.
SPIE Centro de investigaciones en Optica Student Chapter
members in León, Mexico, sent this laser-"drawn" photo
message along with a report on how they spent an education
outreach grant awarded by the society. CIO students present
optics workshops to children and teenagers in isolated
communities situated from 30 to 200 miles from León. More
than 5,000 children and teenagers in 100 communities have
been reached by the chapter's outreach efforts in recent years.
One of the most eloquent answers to the question "why teach science" is found on the website of Photonics Explorer, a program that is progressing toward its goal of bringing photonics education and thereby a greater understanding of science to 2.5 million secondary students across the European Union:

“Every day, our society depends more and more on science and technology. This is not only due to our personal convenience, which often relies on internet access, electrical power or just basic things like clean, drinkable water from the tap. The great challenges we all face together, such as global warming and demographic developments, demand us to (re)search for new answers."

Without a knowledgeable public engaged in the discussion, the website asks, “Who will set the direction and boundaries for research and development? On what basis will citizens decide for or against a specific science policy or a consumer product? Without a basic understanding of scientific facts and reasoning, the public as well as the individual consumer can be easily misled."

Comments

  1. Thanks for great information you write it very clean. I am very lucky to get this tips from you.
    iPad Repair London

    ReplyDelete

Post a Comment

Popular posts from this blog

#FacesofPhotonics: Rising Researcher Alina Zare

SPIE's #FacesofPhotonics is sharing the story of Alina Zare, Associate Professor at the The Machine Learning and Sensing Lab at the University of Florida. Dr. Zare was recognized as a 2018 Rising Researcher for her work in Electronic Imaging & Signal Processing, at the SPIE Defense + Commercial Sensing conference.

This program recognizes early career professionals who conduct outstanding research in the defense, commercial, and scientific sensing, imaging, optics, or related fields. If you want to learn more about the program, the details are here.

Enjoy the interview with Alina!

1. Tell us about when you first became interested in optics and photonics. In my senior year of  undergraduate studies in computer science, I was taking an Image Processing elective.  I really enjoyed the course, and the professor for the class, Dr. Gerhard Ritter, encouraged me to do some undergraduate research.  
So I joined Dr. Paul Gader's research lab as a undergraduate researcher where I he…

#FacesofPhotonics: Photovoltaics PhD Student Arfa Karani

Meet this week's SPIE Faces of Photonics feature, Arfa Karani. Arfa is a physics PhD student at the University of Cambridge, studying the physics of solar cells. She is originally from India, but has lived outside her home country for many years while pursuing her education. 

Arfa was also President of the SPIE Student Chapter at the University of Cambridge in 2017-18, and continues to remain involved with the chapter when she's not hard at work in the university's Cavendish Lab.


Enjoy her interview!




1. How did you become interested in the optics and photonics field? Was there a person who inspired you?

My physics teacher at school inspired me. I got interested in studying optics because my curiosity was satisfied by this teacher, who was extremely enthusiastic about what they did. When you ask too many questions as a child, people try to divert your attention once they are tired of answering. Not this teacher.

I know it’s a bit cliché, but I was amazed by how one could cre…

Lighting Their Way

It's a feast for the science-curious senses: in June, two cohorts of two dozen middle-school girls came together for the free, STEM-focused, four-day-long Physics Wonder Girls Camp sessions organized by Dr. Roberto Ramos, associate professor of physics at the University of the Sciences in Philadelphia.

The girls studied the properties of light, built telescopes, designed and engineered submersible robots, and learned about scientific professions directly from the experts: nanoscientist and Chair of Bryn Mawr College's Physics Department Dr. Xuemei Cheng; INTEL software engineer Dr. Marisa Bauza-Roman; and several female food scientists from Puratos, a global company working with bakers and chocolatiers to assess the best ways to improve their products, all came and talked about their professions, answering questions and interacting with the campers. Plus, they got to be on TV!

The camp was initially inspired by Dr. Ramos' daughter Kristiana who expressed interest in the s…