Skip to main content

Solar-powered broadband expands connectivity

What better opportunity than Earth Day to point out another way that photonics plays a role in improving the planet?

Awareness of the importance of taking care of the earth is becoming more widespread, and most importantly, not just in the affluent countries of the world. In fact, the developing nations are where some of the most innovative efforts are taking place. We've highlighted micro-solar projects in Africa and elsewhere, and the previous post about the LEDs being used to protect livestock from lions shows another brilliant but simple use of photonics.

Here's one that combines solar energy and an expanding communications infrastructure in India. AirJaldi Networks, a company that provides solar-powered Wi-Fi for the rural masses, was plagued by the difficulty of maintaining power to its mobile phone towers in remote areas, especially during the monsoon season. Battery backups were expensive and frequently necessary. As GreenTech Solar reports:
Here’s how it works: every client has a router (just like you or I have at home) that gets connectivity via the airwaves and bandwidth provided by the telecom companies. AirJaldi mounts relays on small towers that receive a signal from other relays or a main distribution point. Those relays send the signal to AirJaldi’s clients. The main difference between our systems and theirs is the vast distance covered, which requires stronger routers.
Next up is converting AirJaldi's network operations centers to solar, a more expensive proposition. But the first one will be converted soon.

This is a step along the road toward making broadband available to everyone. In 2010, Finland declared that access to broadband is a human right. At present the majority of subscribers in the five Indian states served by AirJaldi (jaldi = "fast" in Hindi) are schools, nonprofits, and the like. But the company is hoping to change that.
AirJaldi believes internet access is a right for every citizen and must be provided by fiat. As founder Michael Ginguld puts it: “We have come to expect and accept that electricity, water and roads are a given. Internet should be the same.” He’s got a good argument, too. For every 10 percent increase in internet access, a country sees a 1 percent increase in GDP.

Comments

Popular posts from this blog

#FacesofPhotonics: Rising Researcher Alina Zare

SPIE's #FacesofPhotonics is sharing the story of Alina Zare, Associate Professor at the The Machine Learning and Sensing Lab at the University of Florida. Dr. Zare was recognized as a 2018 Rising Researcher for her work in Electronic Imaging & Signal Processing, at the SPIE Defense + Commercial Sensing conference.

This program recognizes early career professionals who conduct outstanding research in the defense, commercial, and scientific sensing, imaging, optics, or related fields. If you want to learn more about the program, the details are here.

Enjoy the interview with Alina!

1. Tell us about when you first became interested in optics and photonics. In my senior year of  undergraduate studies in computer science, I was taking an Image Processing elective.  I really enjoyed the course, and the professor for the class, Dr. Gerhard Ritter, encouraged me to do some undergraduate research.  
So I joined Dr. Paul Gader's research lab as a undergraduate researcher where I he…

#FacesofPhotonics: Photovoltaics PhD Student Arfa Karani

Meet this week's SPIE Faces of Photonics feature, Arfa Karani. Arfa is a physics PhD student at the University of Cambridge, studying the physics of solar cells. She is originally from India, but has lived outside her home country for many years while pursuing her education. 

Arfa was also President of the SPIE Student Chapter at the University of Cambridge in 2017-18, and continues to remain involved with the chapter when she's not hard at work in the university's Cavendish Lab.


Enjoy her interview!




1. How did you become interested in the optics and photonics field? Was there a person who inspired you?

My physics teacher at school inspired me. I got interested in studying optics because my curiosity was satisfied by this teacher, who was extremely enthusiastic about what they did. When you ask too many questions as a child, people try to divert your attention once they are tired of answering. Not this teacher.

I know it’s a bit cliché, but I was amazed by how one could cre…

#FacesofPhotonics: Optimax Director of Technology and Strategy, Jessica DeGroote Nelson

SPIE Senior Member Jessica DeGroote Nelson works as the director of technology and strategy at Optimax Systems in Ontario, New York. She also teaches as an adjunct assistant professor at The Institute of Optics at the University of Rochester (UR), and is a Conference Chair for SPIE Optifab 2019. 
This year at SPIE Optics + Photonics in San Diego, Nelson will be teaching Optical Materials, Fabrication, and Testing for the Optical Engineer. This course is geared toward optical engineers who are hoping to learn the basics about how optics are made, and ways in which to help reduce the cost of the optics they are designing. 
"Optical tolerancing and the cost to fabricate an optic can be a point of tension or confusion between optical designers and optical fabricators," Nelson says. "I teach this course to help give optical designers who are new to the field a few tools in their toolbelt as they navigate tolerancing and purchasing some of their first designs. One of the thi…