Skip to main content

Pythons, beetles, and jellyfish: bioinspiration for photonics applications

Ever wondered why a snake doesn’t slide sideways when headed uphill or across a slippery surface? It isn’t just a matter of muscle and motivation.

The python's underbelly scales
and heat-seeking nose are cause
for inspiration in photonics R&D.
The underbelly scales of pythons have hooks that find traction to propel them in the direction they want to go -- a concept that has been applicable in developing mechanical propulsion systems.

The heat-sensitive cells in the python’s nose help him find food; humans can use information about the creature’s nervous system to develop more effective and adaptable thermal sensors with applications from digital medical thermometers to car radiators and much more.

A 35-year-old python named Monty was the latest “animal ambassador” from the San Diego Zoo’s Centre for Bioinspiration to demonstrate to photonics researchers at a recent meeting how they and others can learn from nature to solve the world’s problems.

In addition to Monty’s visit this year, staff from the Centre for Bioinspiration at the San Diego Zoo brought a great horned owl and a caiman for bioinspiration demostrations in recent years to SPIE Smart Structures/NDE in San Diego. Zoo staff will be back in March 2014 with more as part of an ongoing collaboration between SPIE and the San Diego Zoo to promote bioinspired engineering design.

The eyes and vision of great
horned owls such as Shaman have
informed 
the work of optical designers.
Acoustical engineers found inspiration
in the construction of the owl's wings
for reducing the noise of high-speed trains.
Two additional projects reported on at the meeting borrowed inspiration from nature to help save trees and to explore the ocean depths:

A team from Pennsylvania State University is developing decoys to blunt the spread of tree-killing emerald ash borer beetles. Their larvae feed on the sap of ash trees, killing by depriving trees of nourishment. Entomology professor Thomas Baker teamed up with the research group of engineering science and mechanics professor Akhlesh Lakhtakia, who replicate biological structures such as fly eyes and butterfly wings. The groups developed a decoy that visually replicates the female borer, enabling researchers to trap the males to decrease breeding and thereby larvae. (Read the paper via open access in the SPIE Digital Library through 31 July: "Fabrication and testing of artificial emerald ash borer visual decoys.")

Virginia Tech College of Engineering researchers have built a man-size, autonomous robotic jellyfish, a larger model of a previous robotic jellyfish built by the same team headed by Shashank Priya, professor of mechanical engineering. Jellyfish are attractive candidates to mimic because of their ability to consume little energy owing to a lower metabolic rate than other marine species, the researchers said. With no central nervous system, jellyfish instead use a diffused nerve net to control movement and can complete complex functions. “A larger vehicle will allow for more payload, longer duration, and longer range of operation,” said Alex Villanueva, a doctoral student in mechanical engineering working under Priya. (Read the paper via open access in the SPIE Digital Library through 31 July: "Modeling and control of a jellyfish-inspired AUV.")
 

Comments

Popular posts from this blog

Ten Ways to Celebrate the first International Day of Light

The first International Day of Light (IDL) is less than a month away. A global initiative highlighting the importance of light and light-based technologies, communities around the world are planning events celebrating IDL on 16 May. First Place Winner of the 2017 SPIE IDL Photo Contest SPIE will participate in outreach events local to our community in Bellingham, Washington, attend the inauguration in Paris, France, and host an IDL reception for our conference attendees at SPIE Optical Systems Design in Frankfurt, Germany taking place May 14-17. SPIE is also supporting local events in 13 different communities from the US to India, Canada to South Africa, who were awarded SPIE IDL Micro Grants to create activities that highlight the critical role light plays in our daily lives. Do you need some ideas on how to show your appreciation of light on the 16th? Here is our top ten list of ways you can celebrate IDL 2018: 1. Throw a Celebration:  Light up your party with ligh...

#FacesofPhotonics: NASA Intern Elaine Stewart

MIRROR, MIRROR: Elaine with the JWST at Goddard Space  Flight Center in Greenbelt, Maryland Meet Elaine Stewart: chemical engineering student, world-traveler, intern at NASA's Goddard Space Flight Center, and this week's SPIE Face of Photonics. Elaine is fascinated by space exploration and how optics impacts our ability to "study distant stars that have never been seen before." Her research has taken her around the world -- from Bochum, Germany, where she studied material science and engineering at Ruhr-Universität, to Houston, Texas, to work on the James Webb Space Telescope (JWST) while it was under cryogenic vacuum chamber testing, to Melbourne, Australia, where she studied biochemical and product engineering at the University of Melbourne in 2017. And, when she's not busy traversing the globe, she is focusing on graduating from the University of Delaware in 2019 with a Bachelor's in Chemical Engineering. Elaine makes a point of remaining an active...

Cataract surgery: misnomer?

On left, the patient’s left eye has no cataract and all structures are visible. On right, retinal image from fundus camera confirms the presence of a cataract. (From Choi, Hjelmstad, Taibl, and Sayegh, SPIE Proc. 85671Y , 2013)   Article by guest blogger Roger S. Reiss , SPIE Fellow and recipient of the 2000 SPIE President's Award. Reiss was the original Ad Hoc Chair of SPIE Optomechanical Working Group. He manages the LinkedIn Group “ Photonic Engineering and Photonic Instruments .” The human eye and its interface with the human brain fit the definition of an "instrument system."   The human eye by itself is also an instrument by definition. After the invention of the microscope and the telescope, the human eye was the first and only detector for hundreds of years, only to be supplemented and in most cases supplanted by an electro-optical detector of various configurations. The evolution of the eye has been and still is a mystery.   In National Geogr...