Skip to main content

Biomarkers + optics equal a powerful new healthcare capability

Biomarkers are getting a lot of attention lately as a means of monitoring health and diagnosing disease, and it’s no surprise that photonics-based sensing techniques are bringing them into the spotlight. A project named BILOBA is a collaboration funded by the European Commission through its Seventh Framework Programme. The acronym is an abbreviation of “Bloch electromagnetic surface wave bio-sensors for early cancer diagnosis”(!)

BILOBA plans to develop and pre-clinically validate a multifunctional point-of-care platform that is capable of performing real-time cancer biomarker detection in a tandem configuration. Such configuration will utilize label-free detection based on the resonance shift, and the spectral analysis of enhanced fluorescence emitted by biomolecules immobilized on the surface. Utilizing both labeled and label-free analysis on the same sensor system can increase the sensitivity and reliability of optically read out surface-bound assays.

The well-established optical standard method for non-labeled detection is the surface plasmon resonance method. Its sensitivity suffers from the strong absorption of surface-bound waves. A similar concept, already at the proof-of-principle stage, will be advantageously implemented by applying the unique properties of Bloch Surface Waves (BSW) sustained on a 1D Photonic Crystal. Therein, a surface wave without absorption is excited, giving rise to an enormous narrowing of resonances and an associated increase in sensitivity. Furthermore, fluorescence enhancement due to near-field effects will be exploited. By utilizing the dispersion of the BSW both detection schemes will be combined.

The major goal of the project is to explore, design, and set-up BSW systems optimized for analytical sensing, associated with the development of a corresponding analytical instrument. For this purpose, the immobilization protocols and biochemical assays have to be established to ensure an optimized binding site density at the surface and to enable the detection of the target biomarkers. Furthermore, a fluidic system will be developed, which will supply and handle the aqueous analyte solutions while ensuring a high signal-to-noise ratio and robust results even in the case of ultralow concentrations. The platform will be validated by pre-clinical tests on the detection of Angiopoietin-1 and -2, and Vascular Endothelial Growth Factor.

The BILOBA project consists of nine participants from different European countries and with different objectives of participating. The three-year project just completed its first year. Its budget is €4.73 million, including €3.6 million from the European Commission.

On a related note, SPIE Newsroom has just published a timely video about the sensing of biomarkers, with Francesco Baldini of Italy’s Institute of Applied Physics. Baldini chairs a conference on Optical Sensing for SPIE and his lab has been working on numerous types and applications of biosensors for years.

Comments

Popular posts from this blog

#FacesofPhotonics: Inspired

Guest blogger: Emily Power is a Winter Quarter graduate in communications from Western Washington University, and most recently social media intern for SPIE, the international society for optics and photonics. She is blogging on responses to the SPIE #FacesofPhotonics campaign, to share the stories of SPIE students around the globe.
It is a commonly known fact: students are the future. Around the world, students with ideas, opinions, and innovative minds are preparing for their opportunities to conceptualize and create the next advances for the ever-changing world in which we live.
In the field of optics and photonics, students are making a difference even now, sharing their work and building their networks through conferences such as SPIE Photonics West, coming up next month in San Francisco.
The SPIE campaign #FacesofPhotonics was developed as a showcase across social media to connect students from SPIE Student Chapters around the world, highlighting similarities, celebrating differ…

Grilling robot takes over backyard barbecue

Photonics has already made profound contributions to such areas as medicine, energy, and communications to make our everyday lives more efficient. (Hence the name of this blog.) People in all walks of life benefit from the incorporation of photonics technologies. We look forward to future advancements when the technology may help find a cure for cancer, monitor and prevent climate change, and pave the way to other advancements we can’t even visualize yet.
But here’s a photonics-based invention -- already demonstrated – that breaks ground in a new area: the backyard barbecue. Talk about hot fun in the summertime!
The BratWurst Bot made its appearance at the Stallwächter-Party of the Baden-Württemberg State Representation in Berlin. It’s made of off-the-shelf robotic components such as the lightweight Universal Robots arm UR-10, a standard parallel gripper (Schunk PG-70) and standard grill tongs. A tablet-based chef’s face interacted with party guests.
Two RGB cameras and a segmentatio…

UPDATE! Gravitational waves ... detected!

Update, 11 February: A hundred years after Einstein predicted them, gravitational waves from a cataclysmic event a billion years ago have been observed.
For the first time, scientists have observed gravitational waves, ripples in the fabric of spacetime arriving at Earth from a cataclysmic event in the distant universe. This confirms a major prediction of Albert Einstein's 1915 general theory of relativity and opens an unprecedented new window to the cosmos.
The discovery was announced on 11 February at a press conference in Washington, DC, hosted by the National Science Foundation, the primary funder of the Laser Interferometer Gravitational Wave Observatory (LIGO).
The gravitational waves were produced during the final fraction of a second of the merger of two black holes to produce a single, more massive spinning black hole. This collision of two black holes had been predicted but never observed.
The event took place on 14 September 2015 at 5:51 a.m. EDT (09:51 UTC) by both of…