Skip to main content

As inspiring as the Olympics: photonics!

Records are broken, new tricks are introduced, new stars step onto the world stage -- there is a lot of inspiration generated when the Olympic Games are on. Feats of athleticism are being demonstrated that were not imagined to be possible, and possibly not even imagined, as recently as 10 years ago.

It’s the same with photonics -- you can decide whether it is as flashy or as exciting as the Olympic Games. But feats are being demonstrated that were not possible until now, by people we may or may not have heard of before. And the results are definitely life-changing, for more than just those who perform them.

For example, in separate talks at SPIE Photonics West last month, Michal Lipson of Cornell University and Ashok Krishnamoorthy of Oracle described new tricks with light that could help solve one of the most profound problems facing our increasingly digitally plugged-in world: data storage capacity, or more precisely, the projected lack of it sometime in the next 5 or 10 years.

The data that won’t be savable unless something major changes isn’t just old email messages. It’s your medical records, bank account, family photos; your research records, copyrights, company payroll; essentially anything computer-generated that you would ever like to see again.

Photonics engineers across the globe are at work on that problem, and on many others.

More examples? Rox Anderson of Harvard and Jim Fujimoto of MIT, two of the established stars among the sparkling crowd at Photonics West, opened a session where several other stars told about their latest work in biomedical optics -- engineering with light, to heal and cure. A few of the speakers were:

  • Bruce Tromberg (Beckman Laser Institute and Medical Clinic University of California Irvine) presenting on optical methods of assessing the effectiveness of cancer therapy to provide feedback in time to improve the treatment.

  • Eric Seibel (University of Washington) talking about using a scanning fiber endoscope to provide high-contrast imaging in small ducts and the cardiovascular system, to improve biopsy procedures, diagnostics, and stent deployment.

  • Gary Shambat (Adamant Technologies) describing using nanometer-sized probes that insert a nanobeam into a single cell without damaging the cell, and functionalizing the beam to essentially take the lab to the biological system instead of extracting the biological system for study in a lab.

That’s photonics engineering, one aspect of what is being celebrated in the U.S. this week as DiscoverE and a major aspect of what will be celebrated around the world in 2015 as the International Year of Light.

True, there are very few clothing endorsement contracts for photonics engineers. But there are records broken, impressive new tricks introduced, and new stars stepping onto the stage to help improve and even save lives.

Comments

Popular posts from this blog

Ten Ways to Celebrate the first International Day of Light

The first International Day of Light (IDL) is less than a month away. A global initiative highlighting the importance of light and light-based technologies, communities around the world are planning events celebrating IDL on 16 May. First Place Winner of the 2017 SPIE IDL Photo Contest SPIE will participate in outreach events local to our community in Bellingham, Washington, attend the inauguration in Paris, France, and host an IDL reception for our conference attendees at SPIE Optical Systems Design in Frankfurt, Germany taking place May 14-17. SPIE is also supporting local events in 13 different communities from the US to India, Canada to South Africa, who were awarded SPIE IDL Micro Grants to create activities that highlight the critical role light plays in our daily lives. Do you need some ideas on how to show your appreciation of light on the 16th? Here is our top ten list of ways you can celebrate IDL 2018: 1. Throw a Celebration:  Light up your party with ligh...

#FacesofPhotonics: NASA Intern Elaine Stewart

MIRROR, MIRROR: Elaine with the JWST at Goddard Space  Flight Center in Greenbelt, Maryland Meet Elaine Stewart: chemical engineering student, world-traveler, intern at NASA's Goddard Space Flight Center, and this week's SPIE Face of Photonics. Elaine is fascinated by space exploration and how optics impacts our ability to "study distant stars that have never been seen before." Her research has taken her around the world -- from Bochum, Germany, where she studied material science and engineering at Ruhr-Universität, to Houston, Texas, to work on the James Webb Space Telescope (JWST) while it was under cryogenic vacuum chamber testing, to Melbourne, Australia, where she studied biochemical and product engineering at the University of Melbourne in 2017. And, when she's not busy traversing the globe, she is focusing on graduating from the University of Delaware in 2019 with a Bachelor's in Chemical Engineering. Elaine makes a point of remaining an active...

Cataract surgery: misnomer?

On left, the patient’s left eye has no cataract and all structures are visible. On right, retinal image from fundus camera confirms the presence of a cataract. (From Choi, Hjelmstad, Taibl, and Sayegh, SPIE Proc. 85671Y , 2013)   Article by guest blogger Roger S. Reiss , SPIE Fellow and recipient of the 2000 SPIE President's Award. Reiss was the original Ad Hoc Chair of SPIE Optomechanical Working Group. He manages the LinkedIn Group “ Photonic Engineering and Photonic Instruments .” The human eye and its interface with the human brain fit the definition of an "instrument system."   The human eye by itself is also an instrument by definition. After the invention of the microscope and the telescope, the human eye was the first and only detector for hundreds of years, only to be supplemented and in most cases supplanted by an electro-optical detector of various configurations. The evolution of the eye has been and still is a mystery.   In National Geogr...