Skip to main content

Rapid response to natural disaster: ESA Sentinel-1 will launch new capability

Next week, on 3 April, a new era will begin in remote-sensing-aided disaster response. The European Space Agency (ESA) has announced that the Sentinel-1A radar satellite will be launched from the European spaceport in French Guiana.

Sentinel-1, the first in the family of
Copernicus satellites, will be used to
care for many aspects of our environment,
from detecting and tracking oil spills and
mapping sea ice to monitoring movement
in land surfaces and mapping changes in
the way land is used. It will also play a
crucial role in providing timely information
to help respond to natural disasters and
assist in emergency response. Photo:
ESA/ATG media lab
Sentinel-1 is designed for responding rapidly to aid emergencies and disasters such as flooding and earthquakes. The first satellite carries an advanced radar sensor to image Earth’s surface through cloud and rain and regardless of time of day.

Each Sentinel mission is based on a constellation of two satellites to provide robust datasets for Copernicus Services, the new name for the Global Monitoring for Environment and Security program, previously known as GMES.

The initiative is headed by the European Commission in partnership with the European Space Agency (ESA). It will provide accurate, timely and easily accessible information to improve the management of the environment, understand and mitigate the effects of climate change and ensure civil security. The first of the initial two-satellite mission, Sentinel-1A will be joined in orbit next year by Sentinel-1B.

Sentinel-1 carries a 12 m-long advanced synthetic aperture radar (SAR), working in C-band. Radar data can be used for monitoring land deformation. The “radar interferometry'” remote-sensing technique combines two or more radar images over the same area to detect changes occurring between acquisitions. Interferometry allows for the monitoring of even slight ground movement – down to a few mm – across wide areas.

As well as being a valuable resource for urban planners, this type of information is essential for monitoring shifts from earthquakes, landslides, and volcanic uplift.

Sentinel-1A being prepared for launch at
Europe’s spaceport in Kourou, French
Guiana. Photo: ESA-B v/d Elst
ESA is developing five families of Sentinel missions specifically for Copernicus. The Sentinels will provide a unique set of observations, starting with the all-weather, day and night radar images from Sentinel-1 to be used for land and ocean services.

Sentinel-2 will deliver high-resolution optical images for land services and Sentinel-3 will provide data for services relevant to the ocean and land.

Sentinel-4 and Sentinel-5 will provide data for atmospheric composition monitoring from geostationary and polar orbits, respectively.

SPIE Proceedings have reported extensively on instrumentation developed for the Sentinel missions, including 14 new papers published in November 2013 from conferences on Earth Observing Systems; Remote Sensing for Agriculture, Ecosystems, and Hydrology; Sensors, Systems, and Next-Generation Satellites; and SAR (Synthetic Aperture Radar) Image Analysis, Modeling, and Techniques.

ESA's Portal will cover the launch live, providing the videostream and updates of the launch at: www.esa.int/esalive and www.livestream.com/eurospaceagency.

Comments

Popular posts from this blog

#FacesofPhotonics: Rising Researcher Alina Zare

SPIE's #FacesofPhotonics is sharing the story of Alina Zare, Associate Professor at the The Machine Learning and Sensing Lab at the University of Florida. Dr. Zare was recognized as a 2018 Rising Researcher for her work in Electronic Imaging & Signal Processing, at the SPIE Defense + Commercial Sensing conference.

This program recognizes early career professionals who conduct outstanding research in the defense, commercial, and scientific sensing, imaging, optics, or related fields. If you want to learn more about the program, the details are here.

Enjoy the interview with Alina!

1. Tell us about when you first became interested in optics and photonics. In my senior year of  undergraduate studies in computer science, I was taking an Image Processing elective.  I really enjoyed the course, and the professor for the class, Dr. Gerhard Ritter, encouraged me to do some undergraduate research.  
So I joined Dr. Paul Gader's research lab as a undergraduate researcher where I he…

#FacesofPhotonics: Photovoltaics PhD Student Arfa Karani

Meet this week's SPIE Faces of Photonics feature, Arfa Karani. Arfa is a physics PhD student at the University of Cambridge, studying the physics of solar cells. She is originally from India, but has lived outside her home country for many years while pursuing her education. 

Arfa was also President of the SPIE Student Chapter at the University of Cambridge in 2017-18, and continues to remain involved with the chapter when she's not hard at work in the university's Cavendish Lab.


Enjoy her interview!




1. How did you become interested in the optics and photonics field? Was there a person who inspired you?

My physics teacher at school inspired me. I got interested in studying optics because my curiosity was satisfied by this teacher, who was extremely enthusiastic about what they did. When you ask too many questions as a child, people try to divert your attention once they are tired of answering. Not this teacher.

I know it’s a bit cliché, but I was amazed by how one could cre…

Lighting Their Way

It's a feast for the science-curious senses: in June, two cohorts of two dozen middle-school girls came together for the free, STEM-focused, four-day-long Physics Wonder Girls Camp sessions organized by Dr. Roberto Ramos, associate professor of physics at the University of the Sciences in Philadelphia.

The girls studied the properties of light, built telescopes, designed and engineered submersible robots, and learned about scientific professions directly from the experts: nanoscientist and Chair of Bryn Mawr College's Physics Department Dr. Xuemei Cheng; INTEL software engineer Dr. Marisa Bauza-Roman; and several female food scientists from Puratos, a global company working with bakers and chocolatiers to assess the best ways to improve their products, all came and talked about their professions, answering questions and interacting with the campers. Plus, they got to be on TV!

The camp was initially inspired by Dr. Ramos' daughter Kristiana who expressed interest in the s…