Skip to main content

Photons for inspiration, fuel -- and light!

The many properties of light have long provided
inspiration for SPIE CEO Dr. Eugene Arthurs.
Editor’s note: A green laser lighted the early career path of then-physics-graduate Eugene Arthurs, now CEO of SPIE, the international society for optics and photonics. Light from many sources continues to provide him with inspiration and direction, Dr. Arthurs writes in this blog post originally published in the International Year of Light blog, www.light2015blog.org.

Looking back, my career path was not determined by some grand plan, but rather by the beauty of the light from an argon ion laser in our Applied Physics department at Queen’s University Belfast. It wasn’t the science that the laser was bought for, Raman spectroscopy, or an understanding of how the laser would change the world, that drew me.

At the time I was soon to graduate with a physics degree – the first in my family history to get a science degree – and was interviewing with a local branch of IBM where my love of mathematics might give me an edge and where I might find stimulating work in Northern Ireland.

But fate intervened and I was seduced by the light, by the pure intense green beam, and lasers became my thing. Mentioning lasers also gave some sort of defense against the many enquiries from caring relatives on when was I going to get a real job.

Another indelible memory; an important insight came to me in 1980 when I was at the home of my boss at the time, Dick Daly, founder of an early laser company. It was the fall (autumn to some) on Long Island, New York, which meant leaves everywhere. Dick pointed to one of his huge piles of leaves and said with his characteristic grin, “One of my photon stores.”

The concept of storing photons was of great interest to laser jocks like Dick and me. Short-pulse high-power lasers benefit greatly from materials that can hold a lot of energy. But Dick’s observation was way beyond the world of lasers and has caused me to think since about the profound relationship between light and life.

The chloroplasts in leaves use the photons from the sun to convert carbon dioxide into oxygen and carbon. All of our forests, our plants have been busy “sequestering” carbon dioxide for hundreds of millennia, while tuning our atmosphere to be human-friendly.

It takes the energy from many photons to grow a leaf, but at the end of the day, what a leaf is, is mostly a carbon-based organic structure built by light. This lesson from one of my many mentors led me to realize that as all fossil fuels started as vegetation, we are burning our way through Earth’s store of photon energy from the sun, accumulated over 300 million years or more.

With many processes and great lengths of time, nature has stored this photon energy from leaves, wood and other biomass in high-density forms such as oil and coal. The high density is key to modern transportation, and collection of fuel for large centralized power plants.

Now we have a formidable challenge to capture and store solar energy arriving today in ways that will challenge nature’s gifts. Nature had all that time to store photons; our version of solar energy is more “real time.” But the sooner that solar becomes a significant part of the global energy mix, the better for our planet, for all of us.

Aside from SPIE, Dr. Arthurs is also a member of the Photonics21 Board of Stakeholders, where he is directly involved in the European Commission’s Horizon 2020 and the entity for a public-private partnership (PPP). Prior to these responsibilities, Eugene has held many positions at esteemed scientific technology organizations in both the US and Europe, and has served on several boards in the realm of optics, photonics, and scientific development.

Comments

Popular posts from this blog

#FacesofPhotonics: Inspired

Guest blogger: Emily Power is a Winter Quarter graduate in communications from Western Washington University, and most recently social media intern for SPIE, the international society for optics and photonics. She is blogging on responses to the SPIE #FacesofPhotonics campaign, to share the stories of SPIE students around the globe.
It is a commonly known fact: students are the future. Around the world, students with ideas, opinions, and innovative minds are preparing for their opportunities to conceptualize and create the next advances for the ever-changing world in which we live.
In the field of optics and photonics, students are making a difference even now, sharing their work and building their networks through conferences such as SPIE Photonics West, coming up next month in San Francisco.
The SPIE campaign #FacesofPhotonics was developed as a showcase across social media to connect students from SPIE Student Chapters around the world, highlighting similarities, celebrating differ…

Grilling robot takes over backyard barbecue

Photonics has already made profound contributions to such areas as medicine, energy, and communications to make our everyday lives more efficient. (Hence the name of this blog.) People in all walks of life benefit from the incorporation of photonics technologies. We look forward to future advancements when the technology may help find a cure for cancer, monitor and prevent climate change, and pave the way to other advancements we can’t even visualize yet.
But here’s a photonics-based invention -- already demonstrated – that breaks ground in a new area: the backyard barbecue. Talk about hot fun in the summertime!
The BratWurst Bot made its appearance at the Stallwächter-Party of the Baden-Württemberg State Representation in Berlin. It’s made of off-the-shelf robotic components such as the lightweight Universal Robots arm UR-10, a standard parallel gripper (Schunk PG-70) and standard grill tongs. A tablet-based chef’s face interacted with party guests.
Two RGB cameras and a segmentatio…

UPDATE! Gravitational waves ... detected!

Update, 11 February: A hundred years after Einstein predicted them, gravitational waves from a cataclysmic event a billion years ago have been observed.
For the first time, scientists have observed gravitational waves, ripples in the fabric of spacetime arriving at Earth from a cataclysmic event in the distant universe. This confirms a major prediction of Albert Einstein's 1915 general theory of relativity and opens an unprecedented new window to the cosmos.
The discovery was announced on 11 February at a press conference in Washington, DC, hosted by the National Science Foundation, the primary funder of the Laser Interferometer Gravitational Wave Observatory (LIGO).
The gravitational waves were produced during the final fraction of a second of the merger of two black holes to produce a single, more massive spinning black hole. This collision of two black holes had been predicted but never observed.
The event took place on 14 September 2015 at 5:51 a.m. EDT (09:51 UTC) by both of…