Skip to main content

Restoring art and culture of the past -- with photonics

Photonics play a major part in restoration of the look of
a set of murals by Mark Rothko at Harvard University.
Ramesh Raskar, a computational photography expert at the MIT Media Lab, and two students used the idea of light projection in helping to develop a method for art conservation, writing software to isolate the images’ colors one pixel at a time and restore the look of a set of Rothko murals.

For the exhibition Mark Rothko’s Harvard Murals, showing through 26 July at the Harvard Art Museums, Raskar and his team worked with art historians, conservation scientists, and conservators to develop digital projection technology that restores the appearance of the murals’ original rich colors.

The artworks had faded while on display in the 1960s and ’70s in a penthouse dining room on the Harvard University campus, for which they were commissioned. Deemed unsuitable for exhibition, the murals entered storage in 1979 and since then had rarely been seen by the public.

The team compared images of the murals in the new gallery to the restored photograph of the original. The software creates a compensation image that is sent to a digital projector and illuminates the murals exactly as they would have looked over 50 years ago ― and the vividness of Rothko’s murals is revived.

The museum turns off the digital projector every day from 4 to 5 p.m. so visitors can see the differences in Rothko’s murals before and after the process.

The SPIE Optical Metrology symposium later this month in Munich includes a plenary talk by Raskar on extreme computational imaging, and also includes a conference on applications of optics and photonics in variety of conservation methods.

The conference, Optics for Arts, Architecture, and Archaeology, chaired by Luca Pezzati of the Istituto Nazionale di Ottica and Piotr Targowski of Nicolaus Copernicus University, will include reports from projects concerned with examining pre-colonial Brazilian ceramics, post-earthquake inspection of masonry underlying murals, underwater survey of marble works submerged for centuries, and other topics.

A few of the many photonics technologies employed are pulsed-phase and infrared thermography, photogrammetry, 2D and 3D modeling, and optical microtopography.

These projects and the Rothko mural restoration are beautiful examples of one of the primary themes of the International Year of Light and Light-based Technologies: to highlight the myriad ways in which light has influenced and continues to influence human culture. Learn more about the United Nations-declared observance at www.spie.org/iyl.

Comments

Popular posts from this blog

Changing life as we know it: the Internet of Things and cyber-physical sensing

More than 20 billion Internet of Things (IoT) devices are expected to be deployed within the next few years; by 2025, this number may reach as much as 1 trillion connected devices. Driven by growth in cloud computing, mobile communications, networks of data-gathering actuators and sensors, and artificial intelligence with machine learning, this trend will change how we live our lives.
Already we live among connected devices in our homes.

Increasingly, we will also wear them, drive them, and monitor our health via the IoT. More businesses will build, ship, and design products and manage inventory with connected devices. In our cities, transportation, communications, and security infrastructure, and services such as water distribution and energy management will employ IoT applications. Farmers will find many uses, from insuring the health of livestock to increasing crop productivity.
Several conferences scheduled for SPIE Defense + Commercial Sensing 2018 (15 through 19 April in Orland…

Hyperspectral imaging: defense technology transfers into commercial applications

Hyperspectral imaging, like many other of today's technologies, is moving into numerous commercial markets after developing and maturing in the defense sector. While still having a strong presence in defense applications, the technology is now used in chemical detection, food quality assurance and inspection, vegetation monitoring, and plant phenotyping, among others.
For more than 20 years, advances in spectral imaging have been on display at SPIE Defense + Commercial Sensing (DCS). The applications and capabilities of the technology have grown along with the conferences and exhibition at SPIE DCS.
The ability to see more than what is visible to the human eye has always been one of the goals of optical engineers. With hyperspectral imaging they have been able to achieve just that. By accessing the entire electromagnetic spectrum, the sensors are able to image a specific wavelength range, or spectral band, and combine images of multiple bands into one 3D scene.
Through analysis,…

Glass ceiling, sticky floor: countering unconscious bias in photonics

Who knew … until last year: Three African-American women working — in obscurity — for NASA as mathematicians played a vital role in the mission that sent astronaut John Glenn into orbit around Earth and brought him back again, in 1962.
Publication of Margot Lee Shetterly's book Hidden Figures and the subsequent release of the acclaimed 2016 film brought the story of the important roles played by Katherine Johnson, Dorothy Vaughan, and Mary Jackson to light for the first time for many.
While their story may have been little known for decades, struggles for opportunity and inclusion are familiar to many women and to members of under-represented minorities or other groups working to make a career in a STEM (science, technology, engineering, and mathematics) field.
Findings on gender equity from the latest SPIE Optics and Photonics Global Salary report indicate that women in the field lag behind men in salary and in representation in management and senior academic positions.
The cost…