Skip to main content

Cars on Mars: following Curiosity and getting excited about science

Mars Curiosity Rover scientist Melissa Rice inspires
the next generation with talk of exploring the
Red Planet: see the video on SPIE.tv [23:55].
(Above, Rice at the NASA Jet Propulsion Lab
with a model of the Curiosity.)
If it wanted to, NASA’s Mars Curiosity Rover could stretch its 7-foot arm up from its 10-foot-high body and slam-dunk a basketball.

Admittedly, it isn’t likely that any of NASA’s Rovers -– cars on Mars, as some call them –- will find any basketball hoops on the Red Planet.

But the space agency’s newest robotic Mars explorer, the Curiosity, has found evidence of ancient lakes, captured images that reveal the composition of rocks on the planet’s surface, and done something many of us have done: taken selfies to post on FaceBook.

Curiosity’s discoveries are far from over. The robot is just now reaching the foothills of the lofty (5.5 km, or 18,000 feet) Mount Sharp, with its mission to scale the peak and report back about what it finds along the way.

That in itself is amazing. On top of that, the telling of that story by scientists such as Melissa Rice, a member of the Curiosity team and a professor at Western Washington University, turns out to be a powerful way to get kids interested in science -- and perhaps to inspire them to pursue careers in STEM fields (science, technology, engineering, and mathematics).

In an International Year of Light event in Bellingham, Washington, USA, this week, Rice told how light-based science and technology are used by the Curiosity Rover, now in its third year of exploration on Mars.

Curiosity uses solar panels to keep its batteries charged, sophisticated cameras not extremely different in concept from those in our ubiquitous smartphones to navigate and record the scenery, and lasers to vaporize tiny bits of rock that other cameras using special filters image to determine how the rocks were formed.

Wrapping up her talk, Rice noted that Curiosity has been such a success that NASA said “let’s build another.”

Now under construction, Mars 2020 is scheduled to land on Mars in 2021. Some of Rice’s students are involved in selecting the landing site, from which the robot will step out on its mission to drill into rocks and collect rocks to be studied on Earth with even more sophisticated experiments than Curiosity’s.

Rice concluded by reaching out to the younger set among the audience of nearly 1,000 who gathered to hear her and to experience the spellbinding laser show by Prismatic Magic that followed.

“Some of you in the audience tonight are the right age to be the first generation to go to Mars” she said, evoking images from the new book and movie The Martian in many minds. “In the 2030s and 2040s, I hope you look back and give us all a wave.”

After the applause died down, a 10-year-old boy was heard telling his father, “That’s definitely on my ‘bucket list.’ I have to go to Mars.”

Images from the laser show:



Comments

  1. I wonder what it would be like to finance NASA expeditions rather than cars haha. It is a lovely idea to think about being able to help people find funding to do something that has some solid impact on the rest of the world.

    ReplyDelete

Post a Comment

Popular posts from this blog

#FacesofPhotonics: Inspired

Guest blogger: Emily Power is a Winter Quarter graduate in communications from Western Washington University, and most recently social media intern for SPIE, the international society for optics and photonics. She is blogging on responses to the SPIE #FacesofPhotonics campaign, to share the stories of SPIE students around the globe.
It is a commonly known fact: students are the future. Around the world, students with ideas, opinions, and innovative minds are preparing for their opportunities to conceptualize and create the next advances for the ever-changing world in which we live.
In the field of optics and photonics, students are making a difference even now, sharing their work and building their networks through conferences such as SPIE Photonics West, coming up next month in San Francisco.
The SPIE campaign #FacesofPhotonics was developed as a showcase across social media to connect students from SPIE Student Chapters around the world, highlighting similarities, celebrating differ…

Grilling robot takes over backyard barbecue

Photonics has already made profound contributions to such areas as medicine, energy, and communications to make our everyday lives more efficient. (Hence the name of this blog.) People in all walks of life benefit from the incorporation of photonics technologies. We look forward to future advancements when the technology may help find a cure for cancer, monitor and prevent climate change, and pave the way to other advancements we can’t even visualize yet.
But here’s a photonics-based invention -- already demonstrated – that breaks ground in a new area: the backyard barbecue. Talk about hot fun in the summertime!
The BratWurst Bot made its appearance at the Stallw├Ąchter-Party of the Baden-W├╝rttemberg State Representation in Berlin. It’s made of off-the-shelf robotic components such as the lightweight Universal Robots arm UR-10, a standard parallel gripper (Schunk PG-70) and standard grill tongs. A tablet-based chef’s face interacted with party guests.
Two RGB cameras and a segmentatio…

UPDATE! Gravitational waves ... detected!

Update, 11 February: A hundred years after Einstein predicted them, gravitational waves from a cataclysmic event a billion years ago have been observed.
For the first time, scientists have observed gravitational waves, ripples in the fabric of spacetime arriving at Earth from a cataclysmic event in the distant universe. This confirms a major prediction of Albert Einstein's 1915 general theory of relativity and opens an unprecedented new window to the cosmos.
The discovery was announced on 11 February at a press conference in Washington, DC, hosted by the National Science Foundation, the primary funder of the Laser Interferometer Gravitational Wave Observatory (LIGO).
The gravitational waves were produced during the final fraction of a second of the merger of two black holes to produce a single, more massive spinning black hole. This collision of two black holes had been predicted but never observed.
The event took place on 14 September 2015 at 5:51 a.m. EDT (09:51 UTC) by both of…