Skip to main content

Six dramatic advances in solar energy

Harvesting, collecting, and deriving usable energy from the Sun and other sustainable sources for people around our planet has made important leaps forward of late. Whether it is summer or winter in your part of the world, that’s excellent news for our future energy needs.

The dual nature of light, recently demonstrated
in an image from the Carbone group at École
Polytechnique Fédérale de Lausanne, and featured
as Figure 1 in a review paper in the Journal of Photonics
for Energy
: "Energy-space photography of light
confined on a nanowire simultaneously shows both
spatial interference and energy quantization."
An open-access article in the Journal of Photonics for Energy co-authored by nine international experts* details some of those advances. Here’s a short list from their review of the state of the art, titled "The role of photonics in energy."

1. Making cheaper and more efficient solar cells

Today’s solar cells are based on inorganic semiconductors -– particularly silicon, the second most abundant material in the Earth’s crust. However, silicon solar cells, although relatively expensive to manufacture, are not the most efficient at converting solar energy into electrical energy.

Solar cells based on other semiconductors are more efficient at conversion but also cost more to make.

A new generation of solar cells in development promises the advantages of low-cost materials, high-throughput manufacturing methods, and low-energy expenditure. These very new emerging cells are still less efficient than more established inorganic solar cells, but they have been improved dramatically over the last few years. Particularly promising are technologies using organic-inorganic hybrid materials such as perovskites.

2. Limiting lost light

Researchers are also working on methods of trapping light within a solar cell more effectively, to limit the amount of energy lost due to reflection off the silicon crystals or layers of protective glass. Existing antireflective coatings have performance limitations, often minimizing the reflection for only a select region of the solar spectrum, and are also dependent on the angle of incidence.

One possible solution is adding nanostructured surfaces (e.g., micro- or nanopillars or nanowires) to minimize reflection.

3. Directing and driving

An alternative to converting sunlight into electricity is harvesting the thermal energy of sunlight directly. Sunlight can be focused onto long pipes coated with an optically absorbing material and filled with a high-thermal-capacity fluid, which is used to drive a turbine. Coatings such as carbon-nanotube and metallic-nanowire arrays with high absorption capabilities are helping toward the goal of creating nearly perfect absorbers.

4. Storing it for later

Research is also being done on storing solar fuels as an energy source, via water-splitting, a process which occurs naturally during photosynthesis. Splitting separates water into its oxygen and hydrogen elements, and can be induced in a photochemical reaction. The induced process of sunlight-driven water splitting is as yet not efficient. But with that solved, the hydrogen produced could be stored in fuel cells and later used for local electricity generation, for example as a transportation fuel for electric vehicles.

5. Following the Sun

Optical and photonic sensors are widely used to make existing technologies that harvest energy and produce power more effective. Tracking systems adjust the positioning of solar collectors to ensure a continued optimum angle relative to the Sun (perpendicular to solar radiation). Sun trackers have the potential to increase the energy collected by solar energy systems by 10% to 100%, depending on factors including the time of the year and geographical position.

6. … or the wind

Wind farms utilize light detection and ranging (LIDAR) technology, which determines wind speed by measuring the Doppler shift of light backscattered by aerosols in the atmosphere. The accurate measurements of wind speeds and turbulence make it possible to more effectively survey potential wind farm sites, optimize their design, and make dynamic adjustments to their operation.

Want to know more? Read the two-part synopsis of the review article in the SPIE Newsroom:

*The paper is authored by Zakya Kafafi, the journal’s editor-in-chief, and Nelson Tansu of Lehigh University; Raúl Martín-Palma of the Universidad Autónoma de Madrid; Ana Nogueira of the University of Campinas; Deirdre O’Carroll of Rutgers University; Jeremy Pietron of the U.S. Naval Research Laboratory; Ifor Samuel of the University of St Andrews; Franky So of North Carolina State University; and Loucas Tsakalakos of General Electric–Global Research Center.


  1. The Australian continent has the highest solar radiation per square metre of any continent and consequently some of the best solar energy resource in the world. Solar Pool Heating

  2. Engineering stuff and techniques that you mentioned on your blog are awesome. Being a electrical Engineer I really enjoy your all posts and learn a lot not only Electrical engineering knowledge but others technologies and tools as well.
    Love from EDesk


Post a Comment

Popular posts from this blog

#FacesofPhotonics: Optimax Director of Technology and Strategy, Jessica DeGroote Nelson

SPIE Senior Member Jessica DeGroote Nelson works as the director of technology and strategy at Optimax Systems in Ontario, New York. She also teaches as an adjunct assistant professor at The Institute of Optics at the University of Rochester (UR), and is a Conference Chair for SPIE Optifab 2019. 
Nelson also teaches Optical Materials, Fabrication, and Testing for the Optical Engineer at SPIE conferences. This course is geared toward optical engineers who are hoping to learn the basics about how optics are made, and ways in which to help reduce the cost of the optics they are designing. It is also offered online.
"Optical tolerancing and the cost to fabricate an optic can be a point of tension or confusion between optical designers and optical fabricators," Nelson says. "I teach this course to help give optical designers who are new to the field a few tools in their toolbelt as they navigate tolerancing and purchasing some of their first designs. One of the things I lov…

Taking a Deep Dive into the World of Biophotonics

SPIE Student Member Gavrielle Untracht is pursuing her PhD at The University of Western Australia. She had the chance to participate in the 9th International Graduate Summer School in Biophotonics this past June on the island of Ven between Sweden and Denmark.

At the school, sponsored by SPIE, invited experts from around the globe gave extended presentations on topics like tissue optics, strategies for cancer treatment using lasers, and entrepreneurship in photonics. Attendees also had the opportunity to present their current research projects, results, or ideas. Gavrielle shares her experiences of the summer school with this community in the following guest blog post.

I recently returned from a week of great discussions and beautiful weather at the 9th Biophotonics Summer School on the Isle of Ven, Sweden. This experience, made possible (in part) by SPIE, was an invaluable opportunity for networking and a deep dive into the world of biophotonics that I would highly recommend to any…

#FacesofPhotonics: Applied Optics Master's Student Christiane Ebongue

Bonjour! Meet Christiane Ebongue, graduate student at Delaware State University (DSU). Christiane is working on a master's degree in applied optics with a goal of achieving a PhD in Physics. When she is not spending time in the lab —something she says she loves so much, she would even want to be there on her birthday! — she enjoys her role as president of her university's SPIE Student Chapter.

Ebongue moved to the United States from Cameroon for college, although she only spoke French at the time. Learning to speak a new language while learning a new field of science was intimidating, she says, but this feat just speaks to how tenacious of a person Ebongue is.

Another example of this steadfast dedication and passion lies in her photonics advocacy work. After defending her thesis in the morning, Ebongue hopped in her car and drove from Delaware to Washington D.C., to participate in Congressional Visits Day, without missing a beat!

"It was awesome, I don't regret it at …