Skip to main content

Pigeon vision: ‘flocksourcing’ cancer detection

Researchers are learning more about how to improve cancer
detection through teaching pigeons like the two above
to identify images of cancerous cells.
Pigeons have been taught how to detect breast cancer -- with an accuracy rate that surpasses humans -- and in the process have inspired ideas about how to better teach humans how to visually detect cancer.

Researchers from the University of California Davis, the University of Iowa, and Emory University published a paper last month detailing how they trained pigeons -- Columba livia, commonly called rock doves, to be precise -- to detect cancerous cells. The birds attained an accuracy rate of 85%, higher than the accuracy of humans doing the task (84%), the Chicago Tribune reported. (Also see the Wall Street Journal for more coverage.)

And when four pigeons were tested on the image and their results combined (“flocksourcing”?), the birds were 99% accurate in identifying cancerous cells.

The researchers also found that while the pigeons had high-accuracy results when looking at slides from tissue samples, they were not able to learn how to accurately identify signs of cancer when looking at mammograms. Unlike biopsied cells viewed under magnification, mammogram images show neighboring tissues such as blood vessels, a factor which affects human accuracy as well.

Because a pigeon’s vision works much the same as a human’s, the research could help scientists improve the results in teaching humans how to visually identify cancer.

“Pathologists and radiologists spend years acquiring and refining their medically essential visual skills, so it is of considerable interest to understand how this process actually unfolds and what image features and properties are critical for accurate diagnostic performance,” the researchers wrote in their article in PLoS ONE.

The research team included Edward Wasserman, Stuit Professor of Experimental Psychology at the University of Iowa; Elizabeth Krupinksi, professor and Vice Chair for Research in the Department of Radiology and Imaging Sciences at Emory University; Richard Levenson, professor and Vice Chair for Strategic Technologies in the Department of Pathology and Laboratory Medicine at the University of California Davis Medical Center; and Victor Navarro, a graduate student in the Department of Psychological and Brain Sciences at the University of Iowa.

Comments

Popular posts from this blog

#FacesofPhotonics: Rising Researcher Alina Zare

SPIE's #FacesofPhotonics is sharing the story of Alina Zare, Associate Professor at the The Machine Learning and Sensing Lab at the University of Florida. Dr. Zare was recognized as a 2018 Rising Researcher for her work in Electronic Imaging & Signal Processing, at the SPIE Defense + Commercial Sensing conference.

This program recognizes early career professionals who conduct outstanding research in the defense, commercial, and scientific sensing, imaging, optics, or related fields. If you want to learn more about the program, the details are here.

Enjoy the interview with Alina!

1. Tell us about when you first became interested in optics and photonics. In my senior year of  undergraduate studies in computer science, I was taking an Image Processing elective.  I really enjoyed the course, and the professor for the class, Dr. Gerhard Ritter, encouraged me to do some undergraduate research.  
So I joined Dr. Paul Gader's research lab as a undergraduate researcher where I he…

#FacesofPhotonics: Photovoltaics PhD Student Arfa Karani

Meet this week's SPIE Faces of Photonics feature, Arfa Karani. Arfa is a physics PhD student at the University of Cambridge, studying the physics of solar cells. She is originally from India, but has lived outside her home country for many years while pursuing her education. 

Arfa was also President of the SPIE Student Chapter at the University of Cambridge in 2017-18, and continues to remain involved with the chapter when she's not hard at work in the university's Cavendish Lab.


Enjoy her interview!




1. How did you become interested in the optics and photonics field? Was there a person who inspired you?

My physics teacher at school inspired me. I got interested in studying optics because my curiosity was satisfied by this teacher, who was extremely enthusiastic about what they did. When you ask too many questions as a child, people try to divert your attention once they are tired of answering. Not this teacher.

I know it’s a bit cliché, but I was amazed by how one could cre…

#FacesofPhotonics and Women In Optics feature: IBM Researcher Anuja De Silva

Meet the SPIE Faces of Photonics star of the week, SPIE Member Anuja De Silva. Anuja grew up in Sri Lanka and now resides in Albany, New York, where she works as a materials and process researcher in the Semiconductor Technology Research division of IBM. Speaking of her work, she says, "I develop new types of materials and processes that help us to scale the size of computer chips... It's hardware development for next-generation semiconductor devices."

Anuja graduated with her Bachelor's in Chemistry from Mount Holyoke College and went on to get her Master's and PhD in Materials Chemistry from Cornell University. Upon conducting a research project for her undergraduate degree, she found her passion for optics and materials research.


"I have always been interested in math and science," Anuja shares. "The options in Sri Lanka, where I grew up, for a career as a research scientist were limited. My mother encouraged me to apply to college in the Unite…