Skip to main content

The photonics of Star Trek: 6 ways sci-fi imagined the future that is today


Sci-fi meets reality in this 1975 NASA photo: The Shuttle Enterprise rolls out of its Palmdale, California, manufacturing facilities with Star Trek television cast members on hand for the ceremony. From left to right are James Fletcher (NASA), DeForest Kelley (“Dr. ‘Bones’ McCoy”), George Takei (“Mr. Sulu”), James Doohan (“Chief Engineer Montgomery ‘Scotty’ Scott”), Nichelle Nichols (“Lt. Uhura”), Leonard Nimoy (“Mr. Spock”), Star Trek creator Gene Roddenberry, an unnamed NASA official, and Walter Koenig (“Ensign Pavel Chekov”).



Fifty years after Gene Roddenberry launched the Star Trek series on American television, many of the then-futuristic devices and ideas on the award-winning show have become commonplace on Earth.

Roddenberry’s creativity and extensive homework in consultation with scientists and engineers of his day infused the show with technology such as photodynamic therapy, laser weapons, and handheld sensors and communication devices. In the process, his sci-fi world colored our expectations, inspiring more than a few young people with a level of interest that led to STEM careers.

The short list that follows notes photonics-enabled ideas and props from the initial series (1966–69) that have become reality. See the January 2016 SPIE Professional magazine article for more.

1. The Replicator: today’s 3D printer

Star Trek’s replicator synthesized food, water, and other provisions on demand.

Today, the company 3D Systems sells consumers a popular 3D printer based on stereolithography, a solid-imaging technology for which company founder Chuck Hull received a patent in 1986. General Electric uses laser-powered 3D printers to create jet-engine fuel nozzles and other complex components

In space, a 3D printer from the company Made in Space was delivered to the International Space Station to test the effects of microgravity on 3D printing.

2. The Communicator: the first flip phone

Captain Kirk and other Enterprise crew members flipped open their personal communicators to speak to someone elsewhere on the starship or on a planet below.

Motorola engineer Martin Cooper, who invented the first mobile phone, told Time magazine that his invention was inspired by the Star Trek communicator.

The flip phone already has been succeeded by smartphones and tablets; photonics devices with displays, lenses, cameras, and more. Lasers are used to manufacture the processors, cases, and batteries and to mark a serial number on each device.

3. The Long-Range Scanner: today’s space-based sensors

Scanners on the Enterprise could detect atmospheric chemistry and presence of water on faraway planets, and even count life forms.

All of this is possible today via satellites or aircraft equipped with photonics sensors.

This year, the European Space Agency will launch a spacecraft equipped with sensors that optical engineers developed to search Mars for evidence of methane and other trace atmospheric gases that could be signatures of active biological or geological processes, using two infrared and one ultraviolet spectrometer.

4. The Tricorder: tomorrow’s Tricorder!

The Star Trek tricorder (a TRI-function reCORDER) was a black rectangular device with a shoulder strap with three functions: to scan a person or unfamiliar area, record technical data, and analyze that data.

For today’s Tricorder, contestants for the $10 million Qualcomm Tricorder XPRIZE are competing in developing a consumer-friendly device capable of diagnosing 15 medical conditions and capturing metrics for health. Consumer testing of finalist teams’ solutions is scheduled for this September, with the winner to be announced in early 2017.

5. Invisibility Cloak: object cloaking

Metamaterials have been demonstrated to effectively cloak objects by manipulating the paths of lightwaves through a novel optical material, demonstrating the basic physics used to make Romulan and Klingon spacecraft invisible in Star Trek.

Sir John Pendry of Imperial College is one of the real-life pioneers of invisibility cloaking with negative-refractive-index metamaterials, and many others report on their research at various SPIE conferences on metamaterials and plasmonics.

6. Healing with light: photodynamic therapy

Star Trek’s chief medical officer, “Bones,” used light for surgery, wound care, accelerated bone healing, and as a dermal regenerator to rebuild skin -- all of which will be discussed at SPIE BiOS during SPIE Photonics West in San Francisco next month.

Lasers and specific wavelengths of light are used today to treat cancer and help skin heal faster, and for for aesthetic treatments, dentistry, and eye surgery. Transcranial near-infrared laser therapy (NILT) has been used to reduce the severity of stroke. Complex skin cancers have been treated at University of Lund and elsewhere using light-activated (photodynamic) medicine.

What fueled your dreams?

Theoretical physicist Stephen Hawking once wrote that "Science fiction such as Star Trek is not only good fun but it also serves a serious purpose, that of expanding the human imagination.” With a nod to such inspiration, the SPIE Photonics West 2016 welcome reception will celebrate the Star Trek anniversary.

What other light-based technologies depicted by Star Trek or elsewhere in science fiction serve a real purpose today or inspired your STEM career?

Comments

  1. I watched the first episodes of Star Trek on our black and white Zenith TV as a kid in the Bronx. With Apollo launches becoming almost routine I wrote a letter to NASA saying that I wanted to be an astronaut. I still have the blue postcard style "Dear John" response in my office. I have since flown mirrors on 3 ISS missions and the X37-B. I have pioneered new materials that could be used on future NASA observatories. If you can conceive it, and believe it, then you can achieve it! Get a Life Coach like me.

    ReplyDelete
  2. Great story about being true to one's own vision -- thanks for your contributions!

    ReplyDelete

Post a Comment

Popular posts from this blog

#FacesofPhotonics: Rising Researcher Alina Zare

SPIE's #FacesofPhotonics is sharing the story of Alina Zare, Associate Professor at the The Machine Learning and Sensing Lab at the University of Florida. Dr. Zare was recognized as a 2018 Rising Researcher for her work in Electronic Imaging & Signal Processing, at the SPIE Defense + Commercial Sensing conference.

This program recognizes early career professionals who conduct outstanding research in the defense, commercial, and scientific sensing, imaging, optics, or related fields. If you want to learn more about the program, the details are here.

Enjoy the interview with Alina!

1. Tell us about when you first became interested in optics and photonics. In my senior year of  undergraduate studies in computer science, I was taking an Image Processing elective.  I really enjoyed the course, and the professor for the class, Dr. Gerhard Ritter, encouraged me to do some undergraduate research.  
So I joined Dr. Paul Gader's research lab as a undergraduate researcher where I he…

#FacesofPhotonics: Optimax Director of Technology and Strategy, Jessica DeGroote Nelson

SPIE Senior Member Jessica DeGroote Nelson works as the director of technology and strategy at Optimax Systems in Ontario, New York. She also teaches as an adjunct assistant professor at The Institute of Optics at the University of Rochester (UR), and is a Conference Chair for SPIE Optifab 2019. 
This year at SPIE Optics + Photonics in San Diego, Nelson will be teaching Optical Materials, Fabrication, and Testing for the Optical Engineer. This course is geared toward optical engineers who are hoping to learn the basics about how optics are made, and ways in which to help reduce the cost of the optics they are designing. 
"Optical tolerancing and the cost to fabricate an optic can be a point of tension or confusion between optical designers and optical fabricators," Nelson says. "I teach this course to help give optical designers who are new to the field a few tools in their toolbelt as they navigate tolerancing and purchasing some of their first designs. One of the thi…

#FacesofPhotonics: Photovoltaics PhD Student Arfa Karani

Meet this week's SPIE Faces of Photonics feature, Arfa Karani. Arfa is a physics PhD student at the University of Cambridge, studying the physics of solar cells. She is originally from India, but has lived outside her home country for many years while pursuing her education. 

Arfa was also President of the SPIE Student Chapter at the University of Cambridge in 2017-18, and continues to remain involved with the chapter when she's not hard at work in the university's Cavendish Lab.


Enjoy her interview!




1. How did you become interested in the optics and photonics field? Was there a person who inspired you?

My physics teacher at school inspired me. I got interested in studying optics because my curiosity was satisfied by this teacher, who was extremely enthusiastic about what they did. When you ask too many questions as a child, people try to divert your attention once they are tired of answering. Not this teacher.

I know it’s a bit cliché, but I was amazed by how one could cre…