Skip to main content

Graphene: changing the world with 2D photonics

In existing technologies, 2D technologies can be introduced
into products such as silicon electronics, semiconductor
nanoparticles, plastics and more for added new
functionality; above; a flexible 2d prototype sensor.
Graphene, anticipated as the next "killer" app to hit optical sensing, is expected to offer an all-in-one solution to the challenges of future optoelectronic technologies, says Frank Koppens. A professor at the Institute of Photonic Sciences (ICFO) in Barcelona, Koppens leads the institute's Quantum Nano-Optoelectronics Group.

Koppens, along with Nathalie Vermeulen of B-PHOT (Brussels Photonics Team, Vrije Universiteit Brussel), will lead a daylong workshop in Brussels on 5 April on transitioning graphene-based photonics technology from research to commercialization.

In his article on Light and Graphene in the current issue of SPIE Professional magazine, Koppens describes the 2D material's tunable optical properties, broadband absorption (from UV to THz), high electrical mobility for ultrafast operation, and novel gate-tunable plasmonic properties.

Two-dimensional materials-based photodetectors are among the most mature and promising solutions, Koppens notes. Potential applications include expanded communications networking and data storage, increased computing speeds, enhanced disease control utilizing increasingly larger and more complex data sets, and more accurate fire, motion, chemical, and other sensor systems including the next generation of wearables.

Graphene is gapless, absorbing light in the ultraviolet, visible, short-wave infrared, near-infrared, mid-infrared, far-infrared, and terahertz spectral regimes. A few of many advantages include:
  • Ability to be monolithically integrated with silicon electronics
  • Extremely fast -- exceeding 250GHz -- as a material-based photodetector
  • Able to bend, stretch, and roll while maintaining useful properties
  • Low-cost production with potential to integrate on thin, transparent, flexible substrates
  • Potential to be competitive against alternate applications in health, safety, security and automotive systems.

Koppens notes that the €1 billion European Union Graphene Flagship program is aiming to work through academia and industry to bring graphene into society within the next 10 years.

For more, read the complete article in the SPIE Professional, and watch Koppens' SPIE Newsroom video interview [7:09] on manipulating light with graphene.

Comments

Post a Comment

Popular posts from this blog

Changing life as we know it: the Internet of Things and cyber-physical sensing

More than 20 billion Internet of Things (IoT) devices are expected to be deployed within the next few years; by 2025, this number may reach as much as 1 trillion connected devices. Driven by growth in cloud computing, mobile communications, networks of data-gathering actuators and sensors, and artificial intelligence with machine learning, this trend will change how we live our lives.
Already we live among connected devices in our homes.

Increasingly, we will also wear them, drive them, and monitor our health via the IoT. More businesses will build, ship, and design products and manage inventory with connected devices. In our cities, transportation, communications, and security infrastructure, and services such as water distribution and energy management will employ IoT applications. Farmers will find many uses, from insuring the health of livestock to increasing crop productivity.
Several conferences scheduled for SPIE Defense + Commercial Sensing 2018 (15 through 19 April in Orland…

Hyperspectral imaging: defense technology transfers into commercial applications

Hyperspectral imaging, like many other of today's technologies, is moving into numerous commercial markets after developing and maturing in the defense sector. While still having a strong presence in defense applications, the technology is now used in chemical detection, food quality assurance and inspection, vegetation monitoring, and plant phenotyping, among others.
For more than 20 years, advances in spectral imaging have been on display at SPIE Defense + Commercial Sensing (DCS). The applications and capabilities of the technology have grown along with the conferences and exhibition at SPIE DCS.
The ability to see more than what is visible to the human eye has always been one of the goals of optical engineers. With hyperspectral imaging they have been able to achieve just that. By accessing the entire electromagnetic spectrum, the sensors are able to image a specific wavelength range, or spectral band, and combine images of multiple bands into one 3D scene.
Through analysis,…

Glass ceiling, sticky floor: countering unconscious bias in photonics

Who knew … until last year: Three African-American women working — in obscurity — for NASA as mathematicians played a vital role in the mission that sent astronaut John Glenn into orbit around Earth and brought him back again, in 1962.
Publication of Margot Lee Shetterly's book Hidden Figures and the subsequent release of the acclaimed 2016 film brought the story of the important roles played by Katherine Johnson, Dorothy Vaughan, and Mary Jackson to light for the first time for many.
While their story may have been little known for decades, struggles for opportunity and inclusion are familiar to many women and to members of under-represented minorities or other groups working to make a career in a STEM (science, technology, engineering, and mathematics) field.
Findings on gender equity from the latest SPIE Optics and Photonics Global Salary report indicate that women in the field lag behind men in salary and in representation in management and senior academic positions.
The cost…