Skip to main content

Understanding the brain through photonics collaborations

Raphael Yuste discusses work in brain mapping
in a new video interview with SPIE.
Rafael Yuste and his research group at Columbia University are trying to image the neural circuits of the brain in hopes of gaining a better understanding of how the brain functions.

However, said Yuste in a recent tour and video interview of his lab with SPIE, the international society for optics and photonics, “The methods in neuroscience have not been there yet.”

Yuste is a Howard Hughes Medical Institute Investigator and co-director of the Kavli Institute for Brain Circuits at Columbia. He and David Boas (director of the optics division of the Athinoula A. Martinos Center for Biomedical Imaging at Massachusetts General Hospital, Harvard Medical School) chair the new Brain applications track at SPIE Photonics West 2017 in San Francisco, running 28 January through 2 February.

Using novel optical techniques such as two-photon and nonlinear microscopy, Yuste’s lab is trying to bring 3D imaging to the activity of the neural circuits inside the brain. It isn’t yet understood how these circuits work, but it is believed that this is where behavior and mental states are determined.

“Unless we have the basic understanding of the biology of the tissue that generates these diseases we are not going to be able to go in intelligently and cure them. It’s kind of like trying to fix a car if you don’t know how it works,” Yuste explained.

Originally trained as an M.D., Yuste switched to basic neuroscience because of his frustration with trying to treat schizophrenic patients and patients who have mental or neurological diseases.

“I’m sure everyone has family or friends who suffer from mental disorders or neurological disorders and you know very, very, well that there are no cures for these diseases as of today. There is nothing we can do for these patients. We treat them by trying to bring down their symptoms, but without attacking the cause of the problem, because we do not know what the causes of the problem are.”

Yuste’s lab is one of many labs worldwide working on imaging the brain and its functions. Recent increases in federal funding including the BRAIN Initiative have brought a new energy to discovering how the brain functions and how to better address mental illness through the physical sciences.

Bringing these researchers together to discuss their successes and failures is an important part of advancements in the field, he notes.

“Neuroscience has not profited from advances in physical sciences as much as it could,” he said. “SPIE Photonics West is an ideal venue for the transfer of expertise from the physical sciences and engineering into biology and neuroscience. And we need to build a bridge, to have people who know how to build and operate microscopes and design optical systems with biologists who need methods to answer particular biological questions. “

The Brain applications track is organized to bring together all the presentations that have to do with this interface between optical methods and neuroscience, Yuste said, highlighting some of the most interesting work being doing in the field and discussing multidisciplinary collaborations to move the work forward.

Yuste also will give a talk in the Neurotechnologies plenary session Sunday afternoon (29 January) during Photonics West.

View more about content and participants in the SPIE Photonics West playlist on YouTube/SPIEtv.

Comments

Popular posts from this blog

#FacesofPhotonics: Inspired

Guest blogger: Emily Power is a Winter Quarter graduate in communications from Western Washington University, and most recently social media intern for SPIE, the international society for optics and photonics. She is blogging on responses to the SPIE #FacesofPhotonics campaign, to share the stories of SPIE students around the globe.
It is a commonly known fact: students are the future. Around the world, students with ideas, opinions, and innovative minds are preparing for their opportunities to conceptualize and create the next advances for the ever-changing world in which we live.
In the field of optics and photonics, students are making a difference even now, sharing their work and building their networks through conferences such as SPIE Photonics West, coming up next month in San Francisco.
The SPIE campaign #FacesofPhotonics was developed as a showcase across social media to connect students from SPIE Student Chapters around the world, highlighting similarities, celebrating differ…

Grilling robot takes over backyard barbecue

Photonics has already made profound contributions to such areas as medicine, energy, and communications to make our everyday lives more efficient. (Hence the name of this blog.) People in all walks of life benefit from the incorporation of photonics technologies. We look forward to future advancements when the technology may help find a cure for cancer, monitor and prevent climate change, and pave the way to other advancements we can’t even visualize yet.
But here’s a photonics-based invention -- already demonstrated – that breaks ground in a new area: the backyard barbecue. Talk about hot fun in the summertime!
The BratWurst Bot made its appearance at the Stallw├Ąchter-Party of the Baden-W├╝rttemberg State Representation in Berlin. It’s made of off-the-shelf robotic components such as the lightweight Universal Robots arm UR-10, a standard parallel gripper (Schunk PG-70) and standard grill tongs. A tablet-based chef’s face interacted with party guests.
Two RGB cameras and a segmentatio…

UPDATE! Gravitational waves ... detected!

Update, 11 February: A hundred years after Einstein predicted them, gravitational waves from a cataclysmic event a billion years ago have been observed.
For the first time, scientists have observed gravitational waves, ripples in the fabric of spacetime arriving at Earth from a cataclysmic event in the distant universe. This confirms a major prediction of Albert Einstein's 1915 general theory of relativity and opens an unprecedented new window to the cosmos.
The discovery was announced on 11 February at a press conference in Washington, DC, hosted by the National Science Foundation, the primary funder of the Laser Interferometer Gravitational Wave Observatory (LIGO).
The gravitational waves were produced during the final fraction of a second of the merger of two black holes to produce a single, more massive spinning black hole. This collision of two black holes had been predicted but never observed.
The event took place on 14 September 2015 at 5:51 a.m. EDT (09:51 UTC) by both of…