Skip to main content

Tiny CubeSats are making space more accessible for study ... in a big way

CubeSat in space. Image courtesy of NASA.

It’s a bird! It’s a plane! It’s a … CubeSat?

Small, boxy, cost-effective nanosatellites are helping to change the way we explore space. Not only are they making low Earth orbit (LEO) space exploration more accessible due to cheap production, but they can be used in both commercial and amateur projects, making applications versatile.

Originally, CubeSats were invented by researchers at California Polytechnic State University and Stanford University to “enable graduate students to design, build, test and operate limited capabilities of artificial satellites within the time and financial constraints of a graduate degree program,” Space Daily reported recently. This was accomplished by establishing a standard CubeSat dimension of 10x10x11 cubic units — small enough to speed up the process and ensure low costs.

(A search on CubeSats literature in the SPIE Digital Library provides insights into how the technology has developed.)


CubeSats in the 'ignorosphere'

Recently, CubeSats were deployed in a mission to gather data from a region of space that was previously uncharted.

Known by some scientists as the “ignorosphere,” because of the limited knowledge of it, Earth’s lower thermosphere cannot support planes, balloons, or standard satellites. In addition, it holds both the hottest and coldest air on Earth, according to New Scientist. Due to this “Bermuda Triangle” effect, efforts to study the mysteries of the ignorosphere have been futile — until this year.

In April 2017, an international mission, QB50, set out to explore the lower thermosphere. The CubeSats launched in a “string of pearls” formation. QB50 project manager Davide Masutti explained in a NewScientist article that the CubeSats will be able to measure various components of the thermosphere, including density and temperature, as they freefall. In doing so, scientists hope to gather data from multiple levels of the thermosphere, thus having a more complete picture of this mysterious area.

Selection of CubeSats that are part of the QB50 mission.
Image courtesy of the QB5O Consortium/NASA.

In addition to data collection in the lower thermosphere, QB50 has three other mission objectives: to facilitate access to space, provide In-Orbit Demonstration, and educate university students. They accomplished the latter by inviting students from around the world to help build the CubeSats that were launched into space.

The “young engineers, supervised by experienced staff at their universities and guided by the QB50 project … will not only learn about space engineering in theory but will leave their universities with hands-on experience,” the site notes.

More information about the mission is on their website.


Upcoming CubeSats presentations

What other missions are deploying CubeSats?

Thomas Pagano
Thomas Pagano, Principal Investigator and Project Manager of the CubeSat Infrared Atmospheric Sounder (CIRAS) at NASA JPL, will be giving a talk about his team’s latest project involving CubeSats at SPIE Optics + Photonics 2017 in San Diego, California.

On 9 August in the Remote Sensing plenary session, Pagano will provide insight into CIRAS, and what NASA hopes to accomplish by launching this satellite in late 2018. He will also be presenting a paper in the Earth Observing Systems conference about the design and development of CIRAS.

In addition to Pagano’s plenary talk, multiple papers will be presented on the topic of CubeSats.

Comments

Popular posts from this blog

#FacesofPhotonics: Inspired

Guest blogger: Emily Power is a Winter Quarter graduate in communications from Western Washington University, and most recently social media intern for SPIE, the international society for optics and photonics. She is blogging on responses to the SPIE #FacesofPhotonics campaign, to share the stories of SPIE students around the globe.
It is a commonly known fact: students are the future. Around the world, students with ideas, opinions, and innovative minds are preparing for their opportunities to conceptualize and create the next advances for the ever-changing world in which we live.
In the field of optics and photonics, students are making a difference even now, sharing their work and building their networks through conferences such as SPIE Photonics West, coming up next month in San Francisco.
The SPIE campaign #FacesofPhotonics was developed as a showcase across social media to connect students from SPIE Student Chapters around the world, highlighting similarities, celebrating differ…

Grilling robot takes over backyard barbecue

Photonics has already made profound contributions to such areas as medicine, energy, and communications to make our everyday lives more efficient. (Hence the name of this blog.) People in all walks of life benefit from the incorporation of photonics technologies. We look forward to future advancements when the technology may help find a cure for cancer, monitor and prevent climate change, and pave the way to other advancements we can’t even visualize yet.
But here’s a photonics-based invention -- already demonstrated – that breaks ground in a new area: the backyard barbecue. Talk about hot fun in the summertime!
The BratWurst Bot made its appearance at the Stallwächter-Party of the Baden-Württemberg State Representation in Berlin. It’s made of off-the-shelf robotic components such as the lightweight Universal Robots arm UR-10, a standard parallel gripper (Schunk PG-70) and standard grill tongs. A tablet-based chef’s face interacted with party guests.
Two RGB cameras and a segmentatio…

UPDATE! Gravitational waves ... detected!

Update, 11 February: A hundred years after Einstein predicted them, gravitational waves from a cataclysmic event a billion years ago have been observed.
For the first time, scientists have observed gravitational waves, ripples in the fabric of spacetime arriving at Earth from a cataclysmic event in the distant universe. This confirms a major prediction of Albert Einstein's 1915 general theory of relativity and opens an unprecedented new window to the cosmos.
The discovery was announced on 11 February at a press conference in Washington, DC, hosted by the National Science Foundation, the primary funder of the Laser Interferometer Gravitational Wave Observatory (LIGO).
The gravitational waves were produced during the final fraction of a second of the merger of two black holes to produce a single, more massive spinning black hole. This collision of two black holes had been predicted but never observed.
The event took place on 14 September 2015 at 5:51 a.m. EDT (09:51 UTC) by both of…