Skip to main content

Hyperspectral imaging: defense technology transfers into commercial applications

Hyperspectral imaging, like many other of today's technologies, is moving into numerous commercial markets after developing and maturing in the defense sector. While still having a strong presence in defense applications, the technology is now used in chemical detection, food quality assurance and inspection, vegetation monitoring, and plant phenotyping, among others.

For more than 20 years, advances in spectral imaging have been on display at SPIE Defense + Commercial Sensing (DCS). The applications and capabilities of the technology have grown along with the conferences and exhibition at SPIE DCS.

The ability to see more than what is visible to the human eye has always been one of the goals of optical engineers. With hyperspectral imaging they have been able to achieve just that. By accessing the entire electromagnetic spectrum, the sensors are able to image a specific wavelength range, or spectral band, and combine images of multiple bands into one 3D scene.

Through analysis, differences between the spectral bands can be found and interpreted. This is useful because materials — whether gasses, vegetation, minerals,or whatever — leave unique spectral signatures in particular portions of the electromagnetic spectrum.

Food Quality and Inspection

SPIE DCS conference chair and CEO of Headwall Photonics David Bannon has been at the forefront of the transformation of hyperspectral imaging from DOD to commercial applications.


Headwall’s sensors have been on drones flying over everything from war zones to crop fields, as well as in processing facilities for cranberries, apples, and other food products. Being able to detect defects or grade food in real time as it goes down a conveyor belt has been a great tool in ensuring our food quality standards are met and waste is mitigated.

Remote Sensing

Many of these sensors have been put on satellites and are currently orbiting Earth in a variety of remote sensing applications. While the amount of data acquired from these satellites is great from an information perspective, from a data management and evaluation perspective the sheer amount can be daunting.

Decartes Labs' Daniela Moody, a 2017 SPIE Rising Researcher, has created algorithms to take petabytes of remote sensing data and create maps of vegetation and crop distributions in a given area. Highlighting corn and soy distribution in an area of Iowa and Brazil, respectively, in her presentation at SPIE DCS 2017.

Hyperspectral image showing corn (yellow) and soy (green) distribution in McCook County, Iowa,  for 2014 (left) and 2015 (right). Pixels labeled corn are shown in yellow, and pixels labeled soy are shown in dark green. Other colors correspond to minor crops (e.g., pink for alfalfa), water, or non-agricultural pixels (grey).

(See the SPIE Digital Library proceedings paper to learn more).

The same hyperspectral technologies used for identifying large swaths of vegetation can also be used for identifying differences in individual plant specimens. One such example, presented at SPIE DCS 2017, was aimed at finding maize seedlings that could withstand cold weather for future strain development. The research was able to determine that particular wavelengths are better for maize phenotyping than others and that full wavelength scans were not needed, providing great data points for future studies.

The average spectral reflectance for different genotypes under the same condition: (a) controlled and (b) cold stressed.

(See the SPIE Digital Library proceedings paper to learn more.)

Gas and Chemical Sensing

One of the more direct connections to the original defense applications of hyperspectral imaging is the ability to sense trace amounts of chemicals from a distance. This is especially important for law enforcement, border security, and intelligence community applications. Researchers have been generating libraries of spectral signatures of hazardous chemicals to be used by device makers and investigators alike.  Speed and accuracy are of utmost importance in these applications and researchers presented a comparative study on a number of the available algorithms at SPIE DCS 2017.

Notional depiction of standoff trace chemical detection in a realistic application-relevant environment.

See the SPIE Digital Library proceedings paper to learn more.)

Long-time attendees of SPIE Defense + Commercial Sensing have seen first-hand the evolution of hyperspectral sensing and have watched its applications grow.

In 1994, there was one conference, Algorithms for Multispectral and Hyperspectral Imagery, and a few companies on the exhibition floor with actual products using the entire spectrum of a scene.

In 2018 the original conference will return for its 24th installment, building on the addition of ultraspectral imagery in 2000, as the ability to add more lines became possible.

In addition, SPIE DCS now has conferences in Next-Generation Spectroscopic Technologies, in its 11th year, and a new conference focused on standards for commercialization, Hyperspectral Imaging Sensors: Innovative Applications and Sensor Standards.

All three of these conferences are currently accepting abstracts for the 2018 symposium, which is sure to continue the long history of bringing the latest and greatest from this growing field. SPIE Defense + Commercial Sensing 2018 will run 15 through 19 April in Orlando, Florida.

Comments

Popular posts from this blog

Ten Ways to Celebrate the first International Day of Light

The first International Day of Light (IDL) is less than a month away. A global initiative highlighting the importance of light and light-based technologies, communities around the world are planning events celebrating IDL on 16 May. First Place Winner of the 2017 SPIE IDL Photo Contest SPIE will participate in outreach events local to our community in Bellingham, Washington, attend the inauguration in Paris, France, and host an IDL reception for our conference attendees at SPIE Optical Systems Design in Frankfurt, Germany taking place May 14-17. SPIE is also supporting local events in 13 different communities from the US to India, Canada to South Africa, who were awarded SPIE IDL Micro Grants to create activities that highlight the critical role light plays in our daily lives. Do you need some ideas on how to show your appreciation of light on the 16th? Here is our top ten list of ways you can celebrate IDL 2018: 1. Throw a Celebration:  Light up your party with ligh...

Cataract surgery: misnomer?

On left, the patient’s left eye has no cataract and all structures are visible. On right, retinal image from fundus camera confirms the presence of a cataract. (From Choi, Hjelmstad, Taibl, and Sayegh, SPIE Proc. 85671Y , 2013)   Article by guest blogger Roger S. Reiss , SPIE Fellow and recipient of the 2000 SPIE President's Award. Reiss was the original Ad Hoc Chair of SPIE Optomechanical Working Group. He manages the LinkedIn Group “ Photonic Engineering and Photonic Instruments .” The human eye and its interface with the human brain fit the definition of an "instrument system."   The human eye by itself is also an instrument by definition. After the invention of the microscope and the telescope, the human eye was the first and only detector for hundreds of years, only to be supplemented and in most cases supplanted by an electro-optical detector of various configurations. The evolution of the eye has been and still is a mystery.   In National Geogr...

#FacesofPhotonics: NASA Intern Elaine Stewart

MIRROR, MIRROR: Elaine with the JWST at Goddard Space  Flight Center in Greenbelt, Maryland Meet Elaine Stewart: chemical engineering student, world-traveler, intern at NASA's Goddard Space Flight Center, and this week's SPIE Face of Photonics. Elaine is fascinated by space exploration and how optics impacts our ability to "study distant stars that have never been seen before." Her research has taken her around the world -- from Bochum, Germany, where she studied material science and engineering at Ruhr-Universität, to Houston, Texas, to work on the James Webb Space Telescope (JWST) while it was under cryogenic vacuum chamber testing, to Melbourne, Australia, where she studied biochemical and product engineering at the University of Melbourne in 2017. And, when she's not busy traversing the globe, she is focusing on graduating from the University of Delaware in 2019 with a Bachelor's in Chemical Engineering. Elaine makes a point of remaining an active...