Skip to main content

#FacesofPhotonics: Biomedical Engineering PhD Student Christopher Pacia

WORKING TOWARD A CURE: PhD student Christopher Pacia 
smiles for the camera
Why haven't we found a cure for cancer yet? This is the question that motivates Christopher Pacia when he's doing research in the Chen Ultrasound Lab at Washington University in St. Louis (WUSTL). Pacia is a PhD student in biomedical engineering, and his research focuses on ultrasound imaging and therapy that can impact cancer patient care. "With a greater understanding of the brain, treatments can be more patient-specific," says Pacia. "In that way, they will also be more effective in improving the lives of those affected by the seemingly boundless complexity of neurological disorders."

Pacia is the current Vice President of the SPIE Student Chapter at his university, under the supervision of 2019 SPIE Britton Chance Award winner, Dr. Samuel Achilefu. The chapter is involved in a variety of local outreach activities which, according to Pacia, is one of the most rewarding parts of being a researcher.

Enjoy SPIE's Faces of Photonics interview with Chris!


1. Share the story of your favorite outreach experience.

One of my favorite outreach experiences was my trip to the local St. Louis Science Center during its annual SciFest event. SciFest is free and open to the public, and it's where scientists, engineers, and doctors come together to show all the amazing things happening around St. Louis. Hundreds of attendees have the chance to walk around and learn about motion-capture technology in movies, how memories are formed in the brain, and how optics acts as a window into our bodies.

Our SPIE Student Chapter went to SciFest to put on an exhibit, showing children and adults the science behind ultrasound imaging. Our booth had hands-on demonstrations to showcase the fundamentals of sound, and the ways in which ultrasound can be used for imaging. We even let the brave, young scientists try to image their own arm! The kids loved playing with sound and trying to see what they look like on the inside. Even adults were amazed when we explained how fetal ultrasound images were formed. The amount of shock and awe that comes from building an understanding in science has been one of the most rewarding parts of being a researcher.

SHOCK AND AWE: Pacia shows how ultrasound imaging works at SciFest

2. Explain your current research and what you do at your job. How does your work impact society? 

A question people are always asking is: Why haven't we found a cure for cancer yet? But, of course cancer research isn't as straightforward and simple as we would hope, especially in the case of brain cancer. The main challenge when treating brain cancer is the presence of the blood-brain barrier (BBB). The BBB has the important task of regulating the diffusion of molecules between the brain and blood vessels. While this is beneficial in protecting neural tissue from foreign pathogens, the BBB also prevents life-saving drugs from being delivered to the brain.

In the Chen Ultrasound Lab at WUSTL, we are working with focused ultrasound (FUS) to non-invasively disrupt the BBB and enhance drug delivery to the target area. The integration of FUS with magnetic resonance imaging (MRI) allows for more precise targeting, so by developing an integrated FUS system, clinicians will be able to use their MRI scanners to non-invasively enhance cancer-drug delivery. This will take us one step closer to developing a cure for cancer.


STEM SEPTET: The team at Chen Ultrasound Lab

3. When you look five years into the future, what do you hope to have accomplished? 

In five years, I hope to have completed my PhD research and be involved with further developing diagnostic and therapeutic tools for the clinic. The necessity for this technology is clear, and with my training I plan on making great strides to improve patient care. My goal is to have developed a system that can help answer at least one question about the brain. Whether it has to do with remapping after disease, the effects from aging, or the enhancement of cognitive processes from neuromodulation, I will want to have my hand in a revolutionary tool that will shape the future of science.

On a more personal level, I'd like to influence the future generations of scientists. The next generation of researchers will have a greater amount of resources, technology, and mentors at their disposal to address any unanswered questions. I will continue to reach out in my community to share what I have learned, and, hopefully, inspire students to pursue a STEM career and push the envelope of science. If I persuade just one student, the five years will have been worth it.

LEAD BY EXAMPLE: Pacia participates in a round-table discussion at the 2019 Photonics West 
Student Chapter Leadership Workshop

4. What is your advice to others in the STEM community?

Building a diverse community and sharing knowledge with each other will push STEM further into the future. There have been great strides in the scientific community in terms of reaching out and encouraging underrepresented minorities to pursue STEM careers. There has been a lot of progress, but it cannot stop there.

There are a number of ways to help. To name a few: going out into local schools and showing students that science is fun is the catalyst to helping students recognize their potential; providing students with the resources to run hands-on experiments will prepare them for a future career in STEM; putting on demonstrations at the science center will help students appreciate how science is used in our everyday lives.

WHEN IN ROME...: When he's not working toward a cure for cancer, Pacia loves to travel!





















SPIE’s #FacesofPhotonics social media campaign connects SPIE members in the global optics, photonics, and STEM communities. It serves to highlight similarities, celebrate differences, and foster a space where conversation and community can thrive.

Follow along with past and present stories on SPIE social media channels:







Or search #FacesofPhotonics on your favorite social network!

Comments

Popular posts from this blog

Ten Ways to Celebrate the first International Day of Light

The first International Day of Light (IDL) is less than a month away. A global initiative highlighting the importance of light and light-based technologies, communities around the world are planning events celebrating IDL on 16 May. First Place Winner of the 2017 SPIE IDL Photo Contest SPIE will participate in outreach events local to our community in Bellingham, Washington, attend the inauguration in Paris, France, and host an IDL reception for our conference attendees at SPIE Optical Systems Design in Frankfurt, Germany taking place May 14-17. SPIE is also supporting local events in 13 different communities from the US to India, Canada to South Africa, who were awarded SPIE IDL Micro Grants to create activities that highlight the critical role light plays in our daily lives. Do you need some ideas on how to show your appreciation of light on the 16th? Here is our top ten list of ways you can celebrate IDL 2018: 1. Throw a Celebration:  Light up your party with ligh...

#FacesofPhotonics: NASA Intern Elaine Stewart

MIRROR, MIRROR: Elaine with the JWST at Goddard Space  Flight Center in Greenbelt, Maryland Meet Elaine Stewart: chemical engineering student, world-traveler, intern at NASA's Goddard Space Flight Center, and this week's SPIE Face of Photonics. Elaine is fascinated by space exploration and how optics impacts our ability to "study distant stars that have never been seen before." Her research has taken her around the world -- from Bochum, Germany, where she studied material science and engineering at Ruhr-Universität, to Houston, Texas, to work on the James Webb Space Telescope (JWST) while it was under cryogenic vacuum chamber testing, to Melbourne, Australia, where she studied biochemical and product engineering at the University of Melbourne in 2017. And, when she's not busy traversing the globe, she is focusing on graduating from the University of Delaware in 2019 with a Bachelor's in Chemical Engineering. Elaine makes a point of remaining an active...

Cataract surgery: misnomer?

On left, the patient’s left eye has no cataract and all structures are visible. On right, retinal image from fundus camera confirms the presence of a cataract. (From Choi, Hjelmstad, Taibl, and Sayegh, SPIE Proc. 85671Y , 2013)   Article by guest blogger Roger S. Reiss , SPIE Fellow and recipient of the 2000 SPIE President's Award. Reiss was the original Ad Hoc Chair of SPIE Optomechanical Working Group. He manages the LinkedIn Group “ Photonic Engineering and Photonic Instruments .” The human eye and its interface with the human brain fit the definition of an "instrument system."   The human eye by itself is also an instrument by definition. After the invention of the microscope and the telescope, the human eye was the first and only detector for hundreds of years, only to be supplemented and in most cases supplanted by an electro-optical detector of various configurations. The evolution of the eye has been and still is a mystery.   In National Geogr...