Skip to main content

The laser: a solution looking for problems?

This is just the sort of thing Theodore Maiman said he had in mind when was interviewed 50 years ago, after being the first to successfully demonstrate the laser: medical procedures that would change or even save lives in ways as yet unimagined.

This time, the laser has been used to perform surgery on an unborn fetus.

Surgeons at the University of Miami’s Jackson Memorial Hospital reported they have performed the first-ever in utero surgery on a fetus. A rare tumor diagnosed about halfway through the pregnancy via ultrasound was removed from the roof of the mouth using laesr technology. A few months later, the baby was born at full-term and healthy.

Never mind that one newspaper at the time called Maiman’s pioneering ruby laser “a solution in search of a problem.” Applications have been developed in nearly every facet of life, and the list of medical solutions that lasers provide is impressive.

Starting from the beginning, medical applications of lasers were life-enhancing -- removing a birthmark known as port-wine stain -- as well as life-saving -- treating skin cancer. Eye surgery was another early application, as IBM Thomas J. Watson Research Center's James Wynne told SPIE.tv in a recent video.

Today lasers are used widely in several medical fields:
  • dermatology: removing tattoos and hair as well as life-threatening tumors
  • ophthalmology: restoring vision by repairing the lens, reattaching a damaged retina or creating a prosthetic retina
  • oncology: treating cancer through photodynamic therap, and diagnosing tumors are earlier and earlier stages for better patient recovery results
  • surgery, dentistry, veterinary medicine and numerous other therapeutic as well as diagnostic applications.

… not to mention wide-ranging nonmedical applications:
  • laser guide stars for astronomical observations
  • lasers for manufacturing everything from smartphones to lumber
  • fiber optic laser systems for broadcasting the internet
  • smart-car technology to detect people or objects behind the vehicle, nondestructive testing of bridges, laser light shows … and much more.

What will the laser do next? Plenty! For example, lasers are enabling new personalized medicine regimens with treatments tailored to an individual’s particular genomes, and hold promise to provide abundant clean energy through the process of fusion.

Hear first-hand from more than three dozen laser experts about what the laser can do and what’s next in a series of videos celebrating the recent 50th anniversary of technology -- and hear from Miles Padgett (University of Glasgow) about the latest in optical tweezers for manipulating light and John Dudley (Univ. de Franche-ComtĂ©, CNRS Institut FEMTO-ST) on new directions in nonlinear optics, in ongoing video coverage on SPIE.tv.

Ted Maiman was among visionaries honored in a tribute display shown during the 2010 observance of the 50th anniversary of laser technology. Photo: Theodore Harold Maiman - © Bettmann/CORBIS.

Comments

  1. I need to know the properties of the Gaussian Beam (specially mode radius) inside a Z shaped optical resonator in which the first and fourth mirrors are planar while the second and third mirrors are curved.

    ReplyDelete

Post a Comment

Popular posts from this blog

Hyperspectral imaging: defense technology transfers into commercial applications

Hyperspectral imaging, like many other of today's technologies, is moving into numerous commercial markets after developing and maturing in the defense sector. While still having a strong presence in defense applications, the technology is now used in chemical detection, food quality assurance and inspection, vegetation monitoring, and plant phenotyping, among others.
For more than 20 years, advances in spectral imaging have been on display at SPIE Defense + Commercial Sensing (DCS). The applications and capabilities of the technology have grown along with the conferences and exhibition at SPIE DCS.
The ability to see more than what is visible to the human eye has always been one of the goals of optical engineers. With hyperspectral imaging they have been able to achieve just that. By accessing the entire electromagnetic spectrum, the sensors are able to image a specific wavelength range, or spectral band, and combine images of multiple bands into one 3D scene.
Through analysis,…

Changing life as we know it: the Internet of Things and cyber-physical sensing

More than 20 billion Internet of Things (IoT) devices are expected to be deployed within the next few years; by 2025, this number may reach as much as 1 trillion connected devices. Driven by growth in cloud computing, mobile communications, networks of data-gathering actuators and sensors, and artificial intelligence with machine learning, this trend will change how we live our lives.
Already we live among connected devices in our homes.

Increasingly, we will also wear them, drive them, and monitor our health via the IoT. More businesses will build, ship, and design products and manage inventory with connected devices. In our cities, transportation, communications, and security infrastructure, and services such as water distribution and energy management will employ IoT applications. Farmers will find many uses, from insuring the health of livestock to increasing crop productivity.
Several conferences scheduled for SPIE Defense + Commercial Sensing 2018 (15 through 19 April in Orland…

Glass ceiling, sticky floor: countering unconscious bias in photonics

Who knew … until last year: Three African-American women working — in obscurity — for NASA as mathematicians played a vital role in the mission that sent astronaut John Glenn into orbit around Earth and brought him back again, in 1962.
Publication of Margot Lee Shetterly's book Hidden Figures and the subsequent release of the acclaimed 2016 film brought the story of the important roles played by Katherine Johnson, Dorothy Vaughan, and Mary Jackson to light for the first time for many.
While their story may have been little known for decades, struggles for opportunity and inclusion are familiar to many women and to members of under-represented minorities or other groups working to make a career in a STEM (science, technology, engineering, and mathematics) field.
Findings on gender equity from the latest SPIE Optics and Photonics Global Salary report indicate that women in the field lag behind men in salary and in representation in management and senior academic positions.
The cost…