Skip to main content

The laser: a solution looking for problems?

This is just the sort of thing Theodore Maiman said he had in mind when was interviewed 50 years ago, after being the first to successfully demonstrate the laser: medical procedures that would change or even save lives in ways as yet unimagined.

This time, the laser has been used to perform surgery on an unborn fetus.

Surgeons at the University of Miami’s Jackson Memorial Hospital reported they have performed the first-ever in utero surgery on a fetus. A rare tumor diagnosed about halfway through the pregnancy via ultrasound was removed from the roof of the mouth using laesr technology. A few months later, the baby was born at full-term and healthy.

Never mind that one newspaper at the time called Maiman’s pioneering ruby laser “a solution in search of a problem.” Applications have been developed in nearly every facet of life, and the list of medical solutions that lasers provide is impressive.

Starting from the beginning, medical applications of lasers were life-enhancing -- removing a birthmark known as port-wine stain -- as well as life-saving -- treating skin cancer. Eye surgery was another early application, as IBM Thomas J. Watson Research Center's James Wynne told SPIE.tv in a recent video.

Today lasers are used widely in several medical fields:
  • dermatology: removing tattoos and hair as well as life-threatening tumors
  • ophthalmology: restoring vision by repairing the lens, reattaching a damaged retina or creating a prosthetic retina
  • oncology: treating cancer through photodynamic therap, and diagnosing tumors are earlier and earlier stages for better patient recovery results
  • surgery, dentistry, veterinary medicine and numerous other therapeutic as well as diagnostic applications.

… not to mention wide-ranging nonmedical applications:
  • laser guide stars for astronomical observations
  • lasers for manufacturing everything from smartphones to lumber
  • fiber optic laser systems for broadcasting the internet
  • smart-car technology to detect people or objects behind the vehicle, nondestructive testing of bridges, laser light shows … and much more.

What will the laser do next? Plenty! For example, lasers are enabling new personalized medicine regimens with treatments tailored to an individual’s particular genomes, and hold promise to provide abundant clean energy through the process of fusion.

Hear first-hand from more than three dozen laser experts about what the laser can do and what’s next in a series of videos celebrating the recent 50th anniversary of technology -- and hear from Miles Padgett (University of Glasgow) about the latest in optical tweezers for manipulating light and John Dudley (Univ. de Franche-Comté, CNRS Institut FEMTO-ST) on new directions in nonlinear optics, in ongoing video coverage on SPIE.tv.

Ted Maiman was among visionaries honored in a tribute display shown during the 2010 observance of the 50th anniversary of laser technology. Photo: Theodore Harold Maiman - © Bettmann/CORBIS.

Comments

  1. I need to know the properties of the Gaussian Beam (specially mode radius) inside a Z shaped optical resonator in which the first and fourth mirrors are planar while the second and third mirrors are curved.

    ReplyDelete

Post a Comment

Popular posts from this blog

An International Inspiration: Attending the International Day of Light 2019 Celebration in Trieste

John Dudley and Perla Viera in Trieste Perla Marlene Viera González, an SPIE Early Career Professional Member working at the Universidad Autonoma de Nuevo Leon, represented the SPIE Student and ECP Membership at the International Day of Light 2019 celebration in Trieste, 16 May. She shares with this community her experiences at the International Centre for Theoretical Physics (ICTP) and the impact of taking part in this annual day of recognizing light. The International Day of Light brings together culture and science.  — SPIE John Dudley, Steering Committee Chair of IDL This phrase was part of the message given by John Dudley during the introduction to the International Day of Light 2019 at the International Centre for Theoretical Physics (ICTP) in Trieste, Italy. And it reflects the importance of bringing together the science, technology, culture, and art that involves light in this emblematic celebration. This year, the IDL celebration was about “Illuminating Ed...

Optics Does That? With Dr. Ashleigh Haruda, Zooarchaeologist.

Dr. Ashleigh Haruda is a zooarchaeologist. Dr. Ashleigh Haruda She examines animal bones found at archaeological sites to investigate the relationship between animals and ancient human societies. These bones reveal information about ancient societies including diet, trade, migration, and market forces. For her doctoral research, she studied pastoralists living in the Central Asian steppe in the Late and Final Bronze Age (1500-800 B.C.E.). These were people who did not practice agriculture, but lived off of their animals, including sheep. “Primarily these people are experiencing their world and their landscape through their animals,” said Haruda. “So, if they fail to move their animals in the right way, or they fail to understand how the weather is going to be that year, they could all die because there was no safety net for them.” By measuring the bones of sheep found in the steppe from the Final Bronze Age, she was able to determine that these pastoralists did not migrate exte...

#FacesofPhotonics: Optimax Director of Technology and Strategy, Jessica DeGroote Nelson

PITCH PERFECT: Optics expert Jessica DeGroote Nelson  SPIE Senior Member Jessica DeGroote Nelson works as the director of technology and strategy at Optimax Systems in Ontario, New York. She also teaches as an adjunct assistant professor at The Institute of Optics at the University of Rochester (UR), and is a Conference Chair for SPIE Optifab 2019.  Nelson also teaches  Optical Materials, Fabrication, and Testing for the Optical Engineer  at SPIE conferences. This course is geared toward optical engineers who are hoping to learn the basics about how optics are made, and ways in which to help reduce the cost of the optics they are designing. It is also offered online. "Optical tolerancing and the cost to fabricate an optic can be a point of tension or confusion between optical designers and optical fabricators," Nelson says. "I teach this course to help give optical designers who are new to the field a few tools in their toolbelt as they navigate toler...