Skip to main content

Six amazing things to do with lasers

First cleaning test on a gilded brass panel of the Florence's
Baptistery North Door by Lorenzo Ghiberti. This masterpiece
is under restoration at the Opificio delle Pietre Dure in Florence.
Lasers are in the news as usual, this time inspiring a list of what Lewis Carroll’s White Queen might have characterized as "six impossible things” to be believed before breakfast. But thanks to optics and photonics, these things are all possible with the help of lasers:

(1) Removing layers of pollution from centuries-old decorative plasters as well as marble and bronze statues.
Laser techniques development supported by the TEMART and CHARISMA projects at the Istituto di Fisica Applicata ‘Nello Carrara’ – Consiglio Nazionale delle Ricerche (IFAC-CNR) have enabled restoration of such masterpieces as Donatello's Profet Abacuc, the Etruscan masterpiece Arringatore from the Trasimene Lake, wall paintings such as the painting of the Santa Maria della Scala museum complex in Siena and the catacombs of Rome, and the Florence Baptistery's North Door, a gilded-brass masterpiece by Lorenzo Ghiberti.

(2) Getting clear,detailed pictures of distant objects in space.
NPR has reported on how astronomers are using adaptive optics systems on computers to analyze the light coming in from a star, to decode the “noise” to render crisp images from the telescope images blurred by travelling through the atmosphere. (Video [6:41]: "New vistas in adaptive optics"). 

(3) Healing the living eye.
The NPR report also notes that researchers at the University of California, Berkeley, are following the same principles to develop a way to see into the living eye and even heal damaged retinas using light.

(4) Recreating the fusion conditions inside our sun to provide a sustainable new energy source to meet the growing demands of Earthlings.
Nuclear fusion, the process that powers the sun, has the potential to provide an effectively inexhaustible source of energy. The challenge is to create here on Earth the conditions that exist in the sun's core. Several methods of harnessing fusion power have been put forth, with the primary ones confining a plasma magnetically or inertially. Researchers at the U.S. Naval Research Lab are among those contributing ideas, as the U.S. National Ignition Facility moves toward proof of principle, and the European HiPER Project and the LIFE project in the U.S. work toward developing power supply networks based on the technology.

(5) Building airplane parts (and human body parts!) “grown from the ground up” through additive manufacturing (Video [5:34]).
Lighter-weight and better-performing airline parts are being built layer-by-layer by GE Aviation in a 3D printing process, and researchers at the University of Iowa are reporting on a biomanufacturing lab to “create functional human organs.”

(6) Storing the equivalent of 50,000 HD movies on a single DVD.
Researchers from Swinburne University of Technology and CSIRO in Australia have described using lasers at the nano level – one ten-thousandth the diameter of a human hair – to increase the number of points on a storage device and thus the amount of data it can hold. That's big data!

Comments

  1. All good except the fusion spin.

    Fusion is great but we can't have an inexhaustible source of energy on Earth without global warming. The power mostly becomes heat that cannot escape fast enough.

    ReplyDelete

Post a Comment

Popular posts from this blog

Hyperspectral imaging: defense technology transfers into commercial applications

Hyperspectral imaging, like many other of today's technologies, is moving into numerous commercial markets after developing and maturing in the defense sector. While still having a strong presence in defense applications, the technology is now used in chemical detection, food quality assurance and inspection, vegetation monitoring, and plant phenotyping, among others.
For more than 20 years, advances in spectral imaging have been on display at SPIE Defense + Commercial Sensing (DCS). The applications and capabilities of the technology have grown along with the conferences and exhibition at SPIE DCS.
The ability to see more than what is visible to the human eye has always been one of the goals of optical engineers. With hyperspectral imaging they have been able to achieve just that. By accessing the entire electromagnetic spectrum, the sensors are able to image a specific wavelength range, or spectral band, and combine images of multiple bands into one 3D scene.
Through analysis,…

Changing life as we know it: the Internet of Things and cyber-physical sensing

More than 20 billion Internet of Things (IoT) devices are expected to be deployed within the next few years; by 2025, this number may reach as much as 1 trillion connected devices. Driven by growth in cloud computing, mobile communications, networks of data-gathering actuators and sensors, and artificial intelligence with machine learning, this trend will change how we live our lives.
Already we live among connected devices in our homes.

Increasingly, we will also wear them, drive them, and monitor our health via the IoT. More businesses will build, ship, and design products and manage inventory with connected devices. In our cities, transportation, communications, and security infrastructure, and services such as water distribution and energy management will employ IoT applications. Farmers will find many uses, from insuring the health of livestock to increasing crop productivity.
Several conferences scheduled for SPIE Defense + Commercial Sensing 2018 (15 through 19 April in Orland…

Glass ceiling, sticky floor: countering unconscious bias in photonics

Who knew … until last year: Three African-American women working — in obscurity — for NASA as mathematicians played a vital role in the mission that sent astronaut John Glenn into orbit around Earth and brought him back again, in 1962.
Publication of Margot Lee Shetterly's book Hidden Figures and the subsequent release of the acclaimed 2016 film brought the story of the important roles played by Katherine Johnson, Dorothy Vaughan, and Mary Jackson to light for the first time for many.
While their story may have been little known for decades, struggles for opportunity and inclusion are familiar to many women and to members of under-represented minorities or other groups working to make a career in a STEM (science, technology, engineering, and mathematics) field.
Findings on gender equity from the latest SPIE Optics and Photonics Global Salary report indicate that women in the field lag behind men in salary and in representation in management and senior academic positions.
The cost…