Skip to main content

Big dreams and nanomedicine: optical nanotransformers

Guest blogger: Elizabeth Bernhardt, a physics research assistant in nonlinear optics at Washington State University, is  blogging on presentations at SPIE Optics + Photonics in San Diego, California, 28 August through 1 September.

Dream big dreams, create amazing solutions:
Paras Prasad offered inspiration in a talk on
how nanomedicine can save lives
Treating diseases in the human body can be incredibly difficult and certain cancers may even be inoperable.

In the opening all-symposium plenary at SPIE Optics + Photonics 2016, Paras Prasad, Executive Director of the Institute for Lasers, Photonics, and Biophotonics at the University at Buffalo, New York, told how he aims to bring treatment directly to the source of the disease, using light.

Inspired early on by James Cameron's move Fantastic Voyage (1966), Dr. Prasad imagined sending something tiny into the human blood stream to specifically target disease. He turned science fiction into reality via nanomedicine.

Nanomedicine uses incredibly small devices, such as multilayered nanotransducers, to treat human diseases from inside the body. The first layer absorbs a particular wavelength of light. The next layer takes this absorbed energy and converts it to a higher or lower wavelength, which is then re-radiated.

The overarching idea is to take low-energy light, such as infrared, send it to a particular location in the body, then change the light to a different, more useful energy. IR light easily passes through the human body with very little damage. Nanotransducers absorb this light, turning it into useful, high-energy visible light, which is easily and readily absorbed by nearby cells. The cells are then destroyed, for an effective and potentially less dangerous way of treating cancer.

Dr. Prasad described another dream becoming reality, via the work of Nobel Laureate Maria Goeppert-Mayer, who developed the theory of two-photon absorption.

At the time, it was assumed experimental verification would never be possible. However, with development of the laser, two-photon absorption occurs every time one uses a green laser pointer.

Moreover, two-photon absorption can be used for dental bonding, killing bacteria, two-photon microscopy, and more. Indeed, Dr. Prasad showed materials applicable to night vision, security, and friend-foe identification. These materials appear to be different colors based on the light they absorb.

He challenged the audience to turn their own imaginings into reality as well. Perhaps the next project in optogenetics (using light to effect genes) will cure or help people with neurological disorders, or even enhance capabilities ... maybe one day neurophotonics will help Superman jump from the pages of a comic book into real-life super-human capabilities.

Note: On Wednesday 31 August, Dr. Prasad will receive the SPIE Gold Medal, the highest award of the Society, in recognition of his work.

Comments

Popular posts from this blog

Ten Ways to Celebrate the first International Day of Light

The first International Day of Light (IDL) is less than a month away. A global initiative highlighting the importance of light and light-based technologies, communities around the world are planning events celebrating IDL on 16 May. First Place Winner of the 2017 SPIE IDL Photo Contest SPIE will participate in outreach events local to our community in Bellingham, Washington, attend the inauguration in Paris, France, and host an IDL reception for our conference attendees at SPIE Optical Systems Design in Frankfurt, Germany taking place May 14-17. SPIE is also supporting local events in 13 different communities from the US to India, Canada to South Africa, who were awarded SPIE IDL Micro Grants to create activities that highlight the critical role light plays in our daily lives. Do you need some ideas on how to show your appreciation of light on the 16th? Here is our top ten list of ways you can celebrate IDL 2018: 1. Throw a Celebration:  Light up your party with light an

Cataract surgery: misnomer?

On left, the patient’s left eye has no cataract and all structures are visible. On right, retinal image from fundus camera confirms the presence of a cataract. (From Choi, Hjelmstad, Taibl, and Sayegh, SPIE Proc. 85671Y , 2013)   Article by guest blogger Roger S. Reiss , SPIE Fellow and recipient of the 2000 SPIE President's Award. Reiss was the original Ad Hoc Chair of SPIE Optomechanical Working Group. He manages the LinkedIn Group “ Photonic Engineering and Photonic Instruments .” The human eye and its interface with the human brain fit the definition of an "instrument system."   The human eye by itself is also an instrument by definition. After the invention of the microscope and the telescope, the human eye was the first and only detector for hundreds of years, only to be supplemented and in most cases supplanted by an electro-optical detector of various configurations. The evolution of the eye has been and still is a mystery.   In National Geogr

#FacesofPhotonics: NASA Intern Elaine Stewart

MIRROR, MIRROR: Elaine with the JWST at Goddard Space  Flight Center in Greenbelt, Maryland Meet Elaine Stewart: chemical engineering student, world-traveler, intern at NASA's Goddard Space Flight Center, and this week's SPIE Face of Photonics. Elaine is fascinated by space exploration and how optics impacts our ability to "study distant stars that have never been seen before." Her research has taken her around the world -- from Bochum, Germany, where she studied material science and engineering at Ruhr-Universität, to Houston, Texas, to work on the James Webb Space Telescope (JWST) while it was under cryogenic vacuum chamber testing, to Melbourne, Australia, where she studied biochemical and product engineering at the University of Melbourne in 2017. And, when she's not busy traversing the globe, she is focusing on graduating from the University of Delaware in 2019 with a Bachelor's in Chemical Engineering. Elaine makes a point of remaining an active