Skip to main content

Laser-induced removal of space debris

If you never thought something as small as a paint chip could have the potential to destroy the International Space Station, think again. Traveling at speeds upwards of 17,500 mph, the ISS could be torn apart by debris smaller than a marble in an instant. NASA is currently tracking more than 500,000 objects orbiting Earth including non-operational satellites and obsolete disengagements from past rocket missions. But the greatest risk to active satellites and space missions comes from the millions of pieces of debris that are nearly impossible to track.
7 mm chip on ISS window caused by a small
fragment of space debris no larger than
a few microns across

An article from 12 May 2016 in the Washington Post reported the International Space Station’s recent collision with “something as unassuming as a flake of paint or a metal fragment just a few thousandths of a millimeter across.”

The fragment left a 7-millimeter chip in a window of the European-built Cupola module. ESA astronaut Tim Peake was the first to snap a picture of the damage, then shared it with the world on his twitter account.

So how might we deal with all this hazardous space material? Lasers!

Authors of Laser-based removal of irregularly shaped space debris, Stefan Scharring, Jascha Wilken, and Hans-Albert Eckel of the German Aerospace Center discuss a new method in applying laser-induced damage principles to clean up space junk, where the use of high-energy laser pulses modify the orbit of debris causing it to burn up in the atmosphere.

The greatest improvement from previous studies in laser-based removal of debris is the ability to target irregularly-shaped objects – a characteristic shared by most space material.

To get a better picture of how much debris we’re working with, watch this short video simulating the increasing amount of space junk that has accumulated over the years in low Earth orbit (LEO).

Claude Phipps of Photonic Associates, LLC and his colleagues have been researching laser orbital debris removal (LODR) for over 15 years and have concluded that it is a very promising technique. Laser technology is improving at an astounding rate and is proving to be the most cost-efficient solution to space junk clean up.


Popular posts from this blog

#FacesofPhotonics: Rising Researcher Alina Zare

SPIE's #FacesofPhotonics is sharing the story of Alina Zare, Associate Professor at the The Machine Learning and Sensing Lab at the University of Florida. Dr. Zare was recognized as a 2018 Rising Researcher for her work in Electronic Imaging & Signal Processing, at the SPIE Defense + Commercial Sensing conference.

This program recognizes early career professionals who conduct outstanding research in the defense, commercial, and scientific sensing, imaging, optics, or related fields. If you want to learn more about the program, the details are here.

Enjoy the interview with Alina!

1. Tell us about when you first became interested in optics and photonics. In my senior year of  undergraduate studies in computer science, I was taking an Image Processing elective.  I really enjoyed the course, and the professor for the class, Dr. Gerhard Ritter, encouraged me to do some undergraduate research.  
So I joined Dr. Paul Gader's research lab as a undergraduate researcher where I he…

#FacesofPhotonics: Photovoltaics PhD Student Arfa Karani

Meet this week's SPIE Faces of Photonics feature, Arfa Karani. Arfa is a physics PhD student at the University of Cambridge, studying the physics of solar cells. She is originally from India, but has lived outside her home country for many years while pursuing her education. 

Arfa was also President of the SPIE Student Chapter at the University of Cambridge in 2017-18, and continues to remain involved with the chapter when she's not hard at work in the university's Cavendish Lab.

Enjoy her interview!

1. How did you become interested in the optics and photonics field? Was there a person who inspired you?

My physics teacher at school inspired me. I got interested in studying optics because my curiosity was satisfied by this teacher, who was extremely enthusiastic about what they did. When you ask too many questions as a child, people try to divert your attention once they are tired of answering. Not this teacher.

I know it’s a bit cliché, but I was amazed by how one could cre…

Lighting Their Way

It's a feast for the science-curious senses: in June, two cohorts of two dozen middle-school girls came together for the free, STEM-focused, four-day-long Physics Wonder Girls Camp sessions organized by Dr. Roberto Ramos, associate professor of physics at the University of the Sciences in Philadelphia.

The girls studied the properties of light, built telescopes, designed and engineered submersible robots, and learned about scientific professions directly from the experts: nanoscientist and Chair of Bryn Mawr College's Physics Department Dr. Xuemei Cheng; INTEL software engineer Dr. Marisa Bauza-Roman; and several female food scientists from Puratos, a global company working with bakers and chocolatiers to assess the best ways to improve their products, all came and talked about their professions, answering questions and interacting with the campers. Plus, they got to be on TV!

The camp was initially inspired by Dr. Ramos' daughter Kristiana who expressed interest in the s…