Skip to main content

#FacesofPhotonics: STEM Advocate & Research Associate, Dr. Jess Wade


JESS WADE: Advocate, organizer, physicist
SPIE's #FacesofPhotonics is sharing the story of Dr. Jess Wade, research associate at Imperial College London, SPIE Early Career Professional, collector of graphic T-shirts with a positive message, and longtime advocate of underrepresented communities in the STEM field.

When she's not studying plastic electronics or helping to promote and organize amazing outreach events such as Pride of Physics, she writes and edits Wikipedia pages of female scientists, showcasing their contributions to the field. This project, and others like it, are part of her overarching mission to attract more young girls to the sciences.

Her most recent project involved raising over £20,000 to buy a copy of Inferior: How Science Got Women Wrong and the New Science that's Rewriting the Story by Angela Saini for every secondary state school in the United Kingdom (and included a fun "Thank you" message from a certain Daniel Radcliffe). One look at her Twitter feed and you'll wonder how she does it all.

Enjoy the interview with Jess, and be sure to say "Hi!" when you see her at her first SPIE conference, SPIE Optics + Photonics, in San Diego next week.

TRICKSTER SCIENTIST: Dr. Jess Wade 
in Lego glasses

1. Tell us about when you first became interested in optics and photonics.

When I first saw a rainbow? I work in organic electronics, where the molecular structure of our materials strongly influences their optical properties. At the moment I'm really fascinated by jewel beetles and other animals or insects that get their colour from their nanostructure rather than pigments. 

In jewel beetles, chitin polymer chains in the beetle's shells arrange in a cholesteric stack - like a Slinky. When unpolarised light hits off their shells, the light that is reflected back becomes circularly polarised. That is so neat. I feel like we are still just catching up with nature.


2. Share your favorite outreach or volunteer story.

I love playing refractive index tricks! There is nothing like pulling a handful of vanishing water pearls out of water or a pyrex beaker out of vegetable oil. I also love making things fluoresce -- whether it is tonic water, pumpkin-seed extract or tumeric in IPA; conjugated organic bonds are a fascinating thing.

Jess interacts with kids at her department's booth at
"Imperial Festival," a free weekend of workshops and science 

at Imperial College London's South Kensington Campus


3. Explain your current research, and how it can impact society.

I make interesting molecular structures out of carbon-based materials, like polymers and small molecules, for next-generation electronic devices. Most polymers are electronic insulators, but we've found some where clever carbon bonding (sp2 hybridisation) results in a delocalised electron on each atom, which makes the materials semiconductors. They can conduct electricity when they are electronically or photo-excited, so they make great solar panels and light emitting diodes. 

Jess & members of the ScienceGrrl community at the 
Kensington and Chelsea Science Festival 
In my work, I mix together a chiral small molecule (a molecule shaped like a spring) with a long, spaghetti like polymer, and try to create structures that emit circularly polarised light. 

This can be used in display technologies, making televisions and mobile phone screens more efficient by directly emitting circularly polarsied light, biosensing (detecting chiral biological analytes), or quantum cryptography.


4. Share an unexpected discovery you've made in your life, either scientific or personal. 

Caroline Dahl and Jess at the US State Department in
Washington D.C. during an International Visitor
Leadership Program
When I was waiting for new materials to arrive from our industry partners, I scavenged all of the abandoned drawers in the clean room and found a liquid crystalline polymer which has an absolutely magical chrioptical response. No one has ever seen such a strong optical rotation. 

In my personal life, I discovered (while making fries) that if you have the oil at just the right temperature (180 C), then turn the heat off, it starts to cool. DUH! But then if you turn the heat on again, it cools faster for a few minutes until it starts to rise again. Me and my dad are still trying to work out why.


5. What are you most excited to see in the future development of photonics? 

I am genuinely excited by the intersection of chemistry, biology and physics -- I think chiral structures can unite all of them. Most of human biology and nature is left-handed, and we're just working out how to incorporate it into the design of new materials and electronic devices. Then we get to come up with clever physics to characterize the systems.

Jess and colleagues at Manchester's Museum of Science 
and Industry, discussing what they can do to 
encourage more girls into science 

6. What is your advice for others in the STEM community?

My dream scientific world is one where we celebrate everyone in the community equally -- the women, the men, the people of colour, the LGBTQ+ scientists. For too long, science has recognized the contributions of only a few. Let's start telling the stories of the others!



"My dream scientific world is one where we celebrate everyone in the community equally."




SPIE’s #FacesofPhotonics social media campaign connects SPIE members in the global optics, photonics, and STEM communities. It serves to highlight similarities, celebrate differences, and foster a space where conversation and community can thrive.

Follow along with past and upcoming stories on SPIE social media channels:







Or search #FacesofPhotonics on your favorite social network!

Comments

Popular posts from this blog

#FacesofPhotonics: Optimax Director of Technology and Strategy, Jessica DeGroote Nelson

SPIE Senior Member Jessica DeGroote Nelson works as the director of technology and strategy at Optimax Systems in Ontario, New York. She also teaches as an adjunct assistant professor at The Institute of Optics at the University of Rochester (UR), and is a Conference Chair for SPIE Optifab 2019. 
Nelson also teaches Optical Materials, Fabrication, and Testing for the Optical Engineer at SPIE conferences. This course is geared toward optical engineers who are hoping to learn the basics about how optics are made, and ways in which to help reduce the cost of the optics they are designing. It is also offered online.
"Optical tolerancing and the cost to fabricate an optic can be a point of tension or confusion between optical designers and optical fabricators," Nelson says. "I teach this course to help give optical designers who are new to the field a few tools in their toolbelt as they navigate tolerancing and purchasing some of their first designs. One of the things I lov…

Taking a Deep Dive into the World of Biophotonics

SPIE Student Member Gavrielle Untracht is pursuing her PhD at The University of Western Australia. She had the chance to participate in the 9th International Graduate Summer School in Biophotonics this past June on the island of Ven between Sweden and Denmark.

At the school, sponsored by SPIE, invited experts from around the globe gave extended presentations on topics like tissue optics, strategies for cancer treatment using lasers, and entrepreneurship in photonics. Attendees also had the opportunity to present their current research projects, results, or ideas. Gavrielle shares her experiences of the summer school with this community in the following guest blog post.


I recently returned from a week of great discussions and beautiful weather at the 9th Biophotonics Summer School on the Isle of Ven, Sweden. This experience, made possible (in part) by SPIE, was an invaluable opportunity for networking and a deep dive into the world of biophotonics that I would highly recommend to any…

#FacesofPhotonics: Applied Optics Master's Student Christiane Ebongue

Bonjour! Meet Christiane Ebongue, graduate student at Delaware State University (DSU). Christiane is working on a master's degree in applied optics with a goal of achieving a PhD in Physics. When she is not spending time in the lab —something she says she loves so much, she would even want to be there on her birthday! — she enjoys her role as president of her university's SPIE Student Chapter.

Ebongue moved to the United States from Cameroon for college, although she only spoke French at the time. Learning to speak a new language while learning a new field of science was intimidating, she says, but this feat just speaks to how tenacious of a person Ebongue is.

Another example of this steadfast dedication and passion lies in her photonics advocacy work. After defending her thesis in the morning, Ebongue hopped in her car and drove from Delaware to Washington D.C., to participate in Congressional Visits Day, without missing a beat!

"It was awesome, I don't regret it at …