Skip to main content

Finding the technologies of the future


The future happens at SPIE Optics + Photonics

What will the future look like? For technologists, policy makers, and venture capitalists alike this is the million-dollar — really billion-dollar — question.

For scientists and engineers working on the technology that will fuel this future, the question is more about where to secure funding, where to publish, and where to present their research. SPIE’s Optics + Photonics symposium in San Diego this August is the choice of many of these top researchers to present their latest iterations on future-impacting technology.


The future of medicine

Technology will most certainly play a large role in the future of healthcare, from innovative imaging techniques and personalized medicine to further understanding of the brain and how it functions and malfunctions. While not a major focus of the symposium, many healthcare-enabling technologies will be presented.

A group of Italian researchers will be presenting their work utilizing machine learning to analyze MRI brain scans for detecting Parkinson’s, Alzheimer’s, and MS respectively, all in hopes of earlier diagnosis and treatment.

UC Berkeley’s Laura Waller will be showcasing her lab’s work with compressive sampling and imaging to visualize brain activity at the neuron level, work that could help researchers understand the basic function of neurons and perhaps unlock a key in neurological disorders.

The Mind Research Network’s work on developing tools for studying brain disorders will showcase research on how to better analyze brain imaging data.

Each of these presentations, like the hundreds of others with healthcare implications, are a small glimpse into the future of medicine and the impact optics and photonics has in healthcare technologies.

Among the papers:


The future of the internet

When looking to the future it’s important to first look at the present and past and what technologies were key innovations in our transformations. In that light, it would be hard to find a bigger driver for change than the internet and mobile phones.

The future will be no different. Building the internet of tomorrow will take innovations in security, data compression, image processing, and display technologies among others.

All of these will be on display in San Diego with entire multiday conferences filled with presentations on quantum, image processing, and OLED technologies. Industry leaders Qualcomm, Samsung, GoPro, IBM, and HP are all presenting their latest research for tomorrow’s innovations.

A roadmap for the quantum internet of the future will be presented by QuTech’s Stephanie Wehner.

Mobile chip manufacturer Qualcomm will be presenting on compression techniques for mobile applications.

A poster presentation on detecting text in natural scenes will showcase technology that's needed for translating signs in real time among other potential applications.

Among the papers:


The future of video and distribution

Before we were all binge-watching Netflix, researchers were developing codecs for compressing and sending video over fiber. Similarly, before the next paradigm shift in video and immersive technologies take over, science needs to happen.

Technicolor, yes, that Technicolor, will be presenting a paper on the key factors in VR experiences.



Google will discuss the latest work on the newly released video codec AV1 which promises to be the next step in distributing 4K content across the web.

GoPro has four presentations all focused on 360 or omnidirectional video, giving us insight on where the future of video lies.

Optics has always been at the core of imaging and the breadth of video, imaging, and distribution content at Optics + Photonics shows this won't change in the future.

Among the papers:


The future of space exploration

Space has long been the final frontier and its exploration the epitome of future-thinking.

From the democratization of space through CubeSats to the exploration of deep space through space telescopes and planetary missions, SPIE Optics + Photonics will have the future of space exploration on display.

Using CubeSats for distributing quantum keys will be presented in a talk that combines the future of the internet with the future of space exploration.

Two presentations will discuss the feasibility of sending wafer sized “nanocrafts” deep into space using lasers to propel them at one-fifth the speed of light. The project is part of the ”star shot“ funded by billionaires Yuri Milner and Mark Zuckerberg and supported by Steven Hawking.


In addition to these exciting presentations NASA, JPL, ESA, Ball Aerospace, and others will present the future of telescopes in hundreds of presentations on the optics and optical engineering needed to see into the cosmos.

Among the papers:


The future

The science of today and most certainly of the future will be interdisciplinary, employing multiple innovations and technologies from disciplines including physics, biology, chemistry, computer science, materials science, and engineering in applications such as the DragonflEYE: A backpack of sensors, powered by a solar cell, that is attached to the brain of a living dragon fly to create a living drone.


At SPIE Optics + Photonics, see:

The future is unknowable and certain to be full of surprises. While we may not know what it holds, we do know the future is starting in optics labs around the world and many of those labs will be presenting their visions for the future in San Diego.

Comments

Popular posts from this blog

#FacesofPhotonics: Inspired

Guest blogger: Emily Power is a Winter Quarter graduate in communications from Western Washington University, and most recently social media intern for SPIE, the international society for optics and photonics. She is blogging on responses to the SPIE #FacesofPhotonics campaign, to share the stories of SPIE students around the globe.
It is a commonly known fact: students are the future. Around the world, students with ideas, opinions, and innovative minds are preparing for their opportunities to conceptualize and create the next advances for the ever-changing world in which we live.
In the field of optics and photonics, students are making a difference even now, sharing their work and building their networks through conferences such as SPIE Photonics West, coming up next month in San Francisco.
The SPIE campaign #FacesofPhotonics was developed as a showcase across social media to connect students from SPIE Student Chapters around the world, highlighting similarities, celebrating differ…

Grilling robot takes over backyard barbecue

Photonics has already made profound contributions to such areas as medicine, energy, and communications to make our everyday lives more efficient. (Hence the name of this blog.) People in all walks of life benefit from the incorporation of photonics technologies. We look forward to future advancements when the technology may help find a cure for cancer, monitor and prevent climate change, and pave the way to other advancements we can’t even visualize yet.
But here’s a photonics-based invention -- already demonstrated – that breaks ground in a new area: the backyard barbecue. Talk about hot fun in the summertime!
The BratWurst Bot made its appearance at the Stallw├Ąchter-Party of the Baden-W├╝rttemberg State Representation in Berlin. It’s made of off-the-shelf robotic components such as the lightweight Universal Robots arm UR-10, a standard parallel gripper (Schunk PG-70) and standard grill tongs. A tablet-based chef’s face interacted with party guests.
Two RGB cameras and a segmentatio…

UPDATE! Gravitational waves ... detected!

Update, 11 February: A hundred years after Einstein predicted them, gravitational waves from a cataclysmic event a billion years ago have been observed.
For the first time, scientists have observed gravitational waves, ripples in the fabric of spacetime arriving at Earth from a cataclysmic event in the distant universe. This confirms a major prediction of Albert Einstein's 1915 general theory of relativity and opens an unprecedented new window to the cosmos.
The discovery was announced on 11 February at a press conference in Washington, DC, hosted by the National Science Foundation, the primary funder of the Laser Interferometer Gravitational Wave Observatory (LIGO).
The gravitational waves were produced during the final fraction of a second of the merger of two black holes to produce a single, more massive spinning black hole. This collision of two black holes had been predicted but never observed.
The event took place on 14 September 2015 at 5:51 a.m. EDT (09:51 UTC) by both of…