Skip to main content

Finding the technologies of the future


The future happens at SPIE Optics + Photonics

What will the future look like? For technologists, policy makers, and venture capitalists alike this is the million-dollar — really billion-dollar — question.

For scientists and engineers working on the technology that will fuel this future, the question is more about where to secure funding, where to publish, and where to present their research. SPIE’s Optics + Photonics symposium in San Diego this August is the choice of many of these top researchers to present their latest iterations on future-impacting technology.


The future of medicine

Technology will most certainly play a large role in the future of healthcare, from innovative imaging techniques and personalized medicine to further understanding of the brain and how it functions and malfunctions. While not a major focus of the symposium, many healthcare-enabling technologies will be presented.

A group of Italian researchers will be presenting their work utilizing machine learning to analyze MRI brain scans for detecting Parkinson’s, Alzheimer’s, and MS respectively, all in hopes of earlier diagnosis and treatment.

UC Berkeley’s Laura Waller will be showcasing her lab’s work with compressive sampling and imaging to visualize brain activity at the neuron level, work that could help researchers understand the basic function of neurons and perhaps unlock a key in neurological disorders.

The Mind Research Network’s work on developing tools for studying brain disorders will showcase research on how to better analyze brain imaging data.

Each of these presentations, like the hundreds of others with healthcare implications, are a small glimpse into the future of medicine and the impact optics and photonics has in healthcare technologies.

Among the papers:


The future of the internet

When looking to the future it’s important to first look at the present and past and what technologies were key innovations in our transformations. In that light, it would be hard to find a bigger driver for change than the internet and mobile phones.

The future will be no different. Building the internet of tomorrow will take innovations in security, data compression, image processing, and display technologies among others.

All of these will be on display in San Diego with entire multiday conferences filled with presentations on quantum, image processing, and OLED technologies. Industry leaders Qualcomm, Samsung, GoPro, IBM, and HP are all presenting their latest research for tomorrow’s innovations.

A roadmap for the quantum internet of the future will be presented by QuTech’s Stephanie Wehner.

Mobile chip manufacturer Qualcomm will be presenting on compression techniques for mobile applications.

A poster presentation on detecting text in natural scenes will showcase technology that's needed for translating signs in real time among other potential applications.

Among the papers:


The future of video and distribution

Before we were all binge-watching Netflix, researchers were developing codecs for compressing and sending video over fiber. Similarly, before the next paradigm shift in video and immersive technologies take over, science needs to happen.

Technicolor, yes, that Technicolor, will be presenting a paper on the key factors in VR experiences.



Google will discuss the latest work on the newly released video codec AV1 which promises to be the next step in distributing 4K content across the web.

GoPro has four presentations all focused on 360 or omnidirectional video, giving us insight on where the future of video lies.

Optics has always been at the core of imaging and the breadth of video, imaging, and distribution content at Optics + Photonics shows this won't change in the future.

Among the papers:


The future of space exploration

Space has long been the final frontier and its exploration the epitome of future-thinking.

From the democratization of space through CubeSats to the exploration of deep space through space telescopes and planetary missions, SPIE Optics + Photonics will have the future of space exploration on display.

Using CubeSats for distributing quantum keys will be presented in a talk that combines the future of the internet with the future of space exploration.

Two presentations will discuss the feasibility of sending wafer sized “nanocrafts” deep into space using lasers to propel them at one-fifth the speed of light. The project is part of the ”star shot“ funded by billionaires Yuri Milner and Mark Zuckerberg and supported by Steven Hawking.


In addition to these exciting presentations NASA, JPL, ESA, Ball Aerospace, and others will present the future of telescopes in hundreds of presentations on the optics and optical engineering needed to see into the cosmos.

Among the papers:


The future

The science of today and most certainly of the future will be interdisciplinary, employing multiple innovations and technologies from disciplines including physics, biology, chemistry, computer science, materials science, and engineering in applications such as the DragonflEYE: A backpack of sensors, powered by a solar cell, that is attached to the brain of a living dragon fly to create a living drone.


At SPIE Optics + Photonics, see:

The future is unknowable and certain to be full of surprises. While we may not know what it holds, we do know the future is starting in optics labs around the world and many of those labs will be presenting their visions for the future in San Diego.

Comments

Popular posts from this blog

#FacesofPhotonics: Optimax Director of Technology and Strategy, Jessica DeGroote Nelson

SPIE Senior Member Jessica DeGroote Nelson works as the director of technology and strategy at Optimax Systems in Ontario, New York. She also teaches as an adjunct assistant professor at The Institute of Optics at the University of Rochester (UR), and is a Conference Chair for SPIE Optifab 2019. 
Nelson also teaches Optical Materials, Fabrication, and Testing for the Optical Engineer at SPIE conferences. This course is geared toward optical engineers who are hoping to learn the basics about how optics are made, and ways in which to help reduce the cost of the optics they are designing. It is also offered online.
"Optical tolerancing and the cost to fabricate an optic can be a point of tension or confusion between optical designers and optical fabricators," Nelson says. "I teach this course to help give optical designers who are new to the field a few tools in their toolbelt as they navigate tolerancing and purchasing some of their first designs. One of the things I lov…

Taking a Deep Dive into the World of Biophotonics

SPIE Student Member Gavrielle Untracht is pursuing her PhD at The University of Western Australia. She had the chance to participate in the 9th International Graduate Summer School in Biophotonics this past June on the island of Ven between Sweden and Denmark.

At the school, sponsored by SPIE, invited experts from around the globe gave extended presentations on topics like tissue optics, strategies for cancer treatment using lasers, and entrepreneurship in photonics. Attendees also had the opportunity to present their current research projects, results, or ideas. Gavrielle shares her experiences of the summer school with this community in the following guest blog post.


I recently returned from a week of great discussions and beautiful weather at the 9th Biophotonics Summer School on the Isle of Ven, Sweden. This experience, made possible (in part) by SPIE, was an invaluable opportunity for networking and a deep dive into the world of biophotonics that I would highly recommend to any…

#FacesofPhotonics: Applied Optics Master's Student Christiane Ebongue

Bonjour! Meet Christiane Ebongue, graduate student at Delaware State University (DSU). Christiane is working on a master's degree in applied optics with a goal of achieving a PhD in Physics. When she is not spending time in the lab —something she says she loves so much, she would even want to be there on her birthday! — she enjoys her role as president of her university's SPIE Student Chapter.

Ebongue moved to the United States from Cameroon for college, although she only spoke French at the time. Learning to speak a new language while learning a new field of science was intimidating, she says, but this feat just speaks to how tenacious of a person Ebongue is.

Another example of this steadfast dedication and passion lies in her photonics advocacy work. After defending her thesis in the morning, Ebongue hopped in her car and drove from Delaware to Washington D.C., to participate in Congressional Visits Day, without missing a beat!

"It was awesome, I don't regret it at …