Skip to main content

What does space technology have to do with medicine?

Ultraviolet image from NASA’s Galaxy Evolution Explorer
shows NGC 3242, a planetary nebula frequently referred to
as “Jupiter’s Ghost.” Image courtesy NASA/JPL-Caltech
Are there any connections between space technologies and healthcare?

You bet there is, says Shouleh Nikzad, senior research scientist at NASA’s Jet Propulsion Laboratory (JPL) at the California Institute of Technology (Caltech) and the principal engineer, co-lead, and technical director for JPL’s Medical Engineering Forum.

Numerous optics and photonics technologies originally developed for space applications have found their way into consumer and medical markets, Nikzad writes in the April 2017 issue of SPIE Professional magazine.

Infrared thermometers, workout machines, compact cameras in mobile phones, and imaging technologies are just a few familiar examples.

Ultraviolet imaging is also used in medical applications
to reveal disease, as in this image of cancerous brain tissue.
Although applying astrophysics technologies to medical applications may appear difficult, there's a certain synergy between these two fields.

"As explorers, we invest great efforts and resources to develop sensors and instruments to measure signatures from faint objects, characterize planetary atmospheres, observe the remnants of dying stars, explore planetary bodies, and search for signs of life," she says.

"These applications require high sensitivity and high accuracy from reliable, robust, compact, low-power, low-mass, noninvasive instruments that can work in harsh and unfriendly environments.

"This probably sounds familiar to those in medical sciences and medical practice," she says. "As human beings, we invest great efforts and resources to help patients. We try to detect faint signals that differentiate good cells from bad, get close to the area of interest without disturbing other areas, … and look for signs of life.

"These conditions also require high sensitivity and high accuracy from reliable, robust, compact, low-power, low-mass, noninvasive instruments that can work in unfriendly environments."

Take the example of the Electronic Nose for environmental monitoring of crewed space missions. JPL developed the ENose to fly on the NASA Space Shuttle during John Glenn Jr.’s second historic flight in 1998 as well as on the International Space Station.

Modeled after the way a mammal’s nose operates, the ENose can be trained to recognize patterns and therefore detect the presence and levels of substances that might be harmful to astronauts.

Some time later, scientists at JPL and the City of Hope, inspired by the fact that some dogs can sniff cancer, collaborated to use the ENose in a proof-of-concept experiment to determine whether the technology can distinguish normal cells from brain-cancer cells and skin-cancer cells.

Ultraviolet imaging is also used in medical applications to reveal disease, as in this image of cancerous brain tissue.

And the benefits between space technologies and medical applications go both ways.

A team from JPL and the Skull Base Institute, for instance, originally developed MARVEL, a multiangle, rear-viewing endoscopic tool, for minimally invasive brain tumor removal. As described in "4-mm-diameter three-dimensional imaging endoscope with steerable camera for minimally invasive surgery (3-D-MARVEL)," in the journal Neurophotonics, the tool has stereoscopic vision and fits within a small 4-mm-diameter tube.

It was not long before a space application for the technology was realized. The MARVEL innovation can be used to remotely sense and verify the rock and soil samples collected by robots from planetary bodies, before the samples are returned to Earth.

Photonics technologies not only make for a better world, they are literally out of this world!

Comments

Popular posts from this blog

Ten Ways to Celebrate the first International Day of Light

The first International Day of Light (IDL) is less than a month away. A global initiative highlighting the importance of light and light-based technologies, communities around the world are planning events celebrating IDL on 16 May. First Place Winner of the 2017 SPIE IDL Photo Contest SPIE will participate in outreach events local to our community in Bellingham, Washington, attend the inauguration in Paris, France, and host an IDL reception for our conference attendees at SPIE Optical Systems Design in Frankfurt, Germany taking place May 14-17. SPIE is also supporting local events in 13 different communities from the US to India, Canada to South Africa, who were awarded SPIE IDL Micro Grants to create activities that highlight the critical role light plays in our daily lives. Do you need some ideas on how to show your appreciation of light on the 16th? Here is our top ten list of ways you can celebrate IDL 2018: 1. Throw a Celebration:  Light up your party with ligh...

#FacesofPhotonics: NASA Intern Elaine Stewart

MIRROR, MIRROR: Elaine with the JWST at Goddard Space  Flight Center in Greenbelt, Maryland Meet Elaine Stewart: chemical engineering student, world-traveler, intern at NASA's Goddard Space Flight Center, and this week's SPIE Face of Photonics. Elaine is fascinated by space exploration and how optics impacts our ability to "study distant stars that have never been seen before." Her research has taken her around the world -- from Bochum, Germany, where she studied material science and engineering at Ruhr-Universität, to Houston, Texas, to work on the James Webb Space Telescope (JWST) while it was under cryogenic vacuum chamber testing, to Melbourne, Australia, where she studied biochemical and product engineering at the University of Melbourne in 2017. And, when she's not busy traversing the globe, she is focusing on graduating from the University of Delaware in 2019 with a Bachelor's in Chemical Engineering. Elaine makes a point of remaining an active...

Cataract surgery: misnomer?

On left, the patient’s left eye has no cataract and all structures are visible. On right, retinal image from fundus camera confirms the presence of a cataract. (From Choi, Hjelmstad, Taibl, and Sayegh, SPIE Proc. 85671Y , 2013)   Article by guest blogger Roger S. Reiss , SPIE Fellow and recipient of the 2000 SPIE President's Award. Reiss was the original Ad Hoc Chair of SPIE Optomechanical Working Group. He manages the LinkedIn Group “ Photonic Engineering and Photonic Instruments .” The human eye and its interface with the human brain fit the definition of an "instrument system."   The human eye by itself is also an instrument by definition. After the invention of the microscope and the telescope, the human eye was the first and only detector for hundreds of years, only to be supplemented and in most cases supplanted by an electro-optical detector of various configurations. The evolution of the eye has been and still is a mystery.   In National Geogr...