Skip to main content

Very wearable wearables usher in new paradigm in healthcare

Wearables including temporary tattoos are contributing
to a paradigm shift in healthcare monitoring;
above, a slide from a presentation by Nanshu Lu
on graphene electronic tattoos for monitoring organ function.

Wearable devices, materials, and even temporary tattoos are entering healthcare and other markets, offering the potential for faster, more accurate, and potentially life-saving treatment.

Tracking and measuring activity in the 11 major organ systems in the human body systems is imperative for medical providers to quickly and accurately diagnose and treat patients experience trauma or other emergencies. But existing medical equipment may be uncomfortably bulky or take valuable time to set up.

Skin-like devices and other technologies can provide unobtrusive, comfortable, and precise alternatives for sensing what is happening inside the body.

In one development, researchers at the University of Texas at Austin are developing a skin-like temporary tattoo that takes measurements of electrical signals from the heart, muscles, and brain (see a video presentation in the SPIE Digital Library and a report in IEEE Spectrum).

Nanshu Lu and Deji Akinwande of the University of Texas at Austin have developed a method for making graphene electrodes that may be applied to the skin, much like a temporary tattoo.

Lu and Akinwande invented epidermal electronics with John Rogers of the University of Illinois at Urbana-Champaign six years, Lu told an audience at SPIE Smart Structures and Materials and Nondestructive Evaluation in Portland, Oregon, in March.

Their process starts “by growing single-layer graphene on a sheet of copper,” Lu explained in IEEE Spectrum. The 2D carbon sheet is coated with a stretchy support polymer, and the copper is etched off.

Next, the polymer-graphene sheet is placed on temporary tattoo paper, the graphene is carved to make electrodes with stretchy spiral-shaped connections between them, and the excess graphene is removed.

The sensor is then applied by placing it on the skin and wetting the back of the paper.

“The next step is to add an antenna to the design so that signals can be beamed off the device to a phone or computer,” Akinwande said.

Lu and Akinwande will give updates on their work in featured talks at SPIE Optics and Photonics in San Diego in August.

Among other advances being reported at the meeting in San Diego by groups working in wearables for healthcare:

  • Matti Mantysalo, Tampere University of Technology, et al. will present on printed soft-electronics for remote body monitoring, including fabrication and characterization of electrode bandages and temperature sensors (10366-13). Among wearable electronics entering consumer markets over the past few years, wrist devices and textile integration are common technologies for unobtrusive measuring during sport and for well-being, they say, and disposable bandages represent a paradigm shift.

  • Raphael Pfattner and others in the research group of Zhenan Bao of Stanford University have been working with material properties for stretchable electronics for wearable devices, to overcome severe limitations that may be posed by organic materials (10365-9).

  • Benjamin Tee of the Institute of Materials Research and Engineering in Singapore will cover a variety of dramatic changes in how we interact with the digital environment, in his paper on optogenetic electronic skins (10366-16) — for example, robots can don sensor active skins to shake human hands with comfortable pressure, measure health biometrics, and possibly aid in wound healing.

  • Piero Cosseddu, Università degli Studi di Cagliari, et al. will show how organic charge-modulated field-effect transistors can be routinely fabricated on highly flexible, ultraconformable thin films and used for monitoring pH variations with a very high degree of sensitivity (10364-19). Their approach has been applied for monitoring cell metabolic activity as well as electrical activity of excitable cells.

Healing wounds, monitoring organ function, “seeing” inside the body — just a few of the ways that wearables are changing our lives.

Comments

  1. Until I read your post, I didn't even know electronic & temporary tattoos exist or can be used for health monitoring purposes. Today, I'd like to talk about another unique wearable technology that is designed to assist people who are blind or visually impaired. They're known as talking glasses for the blind. In fact, it's a tiny camera with powerful features like reading both printed and digital text. Artificial vision powered blind assistive technology converts what is in front of it to audio and speaks the message to the wearer discreetly. More importantly, it doesn't require a smartphone or an internet connection to function. I thought you'd be interested in this kind of wearable artificial vision products. I'll be following your blog to learn more about medical wearable industry.

    ReplyDelete
  2. Thanks to the advancements in technology, we have more resources to cure different type of diseases. Have you heard about this wearable artificial vision device that helps partially sighted people "read" on their own? It's an incredible blind assistive technology that converts what is in front of it to audio and speaks the message to the wearer's ear instantly and discreetly.

    ReplyDelete

Post a Comment

Popular posts from this blog

Ten Ways to Celebrate the first International Day of Light

The first International Day of Light (IDL) is less than a month away. A global initiative highlighting the importance of light and light-based technologies, communities around the world are planning events celebrating IDL on 16 May. First Place Winner of the 2017 SPIE IDL Photo Contest SPIE will participate in outreach events local to our community in Bellingham, Washington, attend the inauguration in Paris, France, and host an IDL reception for our conference attendees at SPIE Optical Systems Design in Frankfurt, Germany taking place May 14-17. SPIE is also supporting local events in 13 different communities from the US to India, Canada to South Africa, who were awarded SPIE IDL Micro Grants to create activities that highlight the critical role light plays in our daily lives. Do you need some ideas on how to show your appreciation of light on the 16th? Here is our top ten list of ways you can celebrate IDL 2018: 1. Throw a Celebration:  Light up your party with ligh...

Cataract surgery: misnomer?

On left, the patient’s left eye has no cataract and all structures are visible. On right, retinal image from fundus camera confirms the presence of a cataract. (From Choi, Hjelmstad, Taibl, and Sayegh, SPIE Proc. 85671Y , 2013)   Article by guest blogger Roger S. Reiss , SPIE Fellow and recipient of the 2000 SPIE President's Award. Reiss was the original Ad Hoc Chair of SPIE Optomechanical Working Group. He manages the LinkedIn Group “ Photonic Engineering and Photonic Instruments .” The human eye and its interface with the human brain fit the definition of an "instrument system."   The human eye by itself is also an instrument by definition. After the invention of the microscope and the telescope, the human eye was the first and only detector for hundreds of years, only to be supplemented and in most cases supplanted by an electro-optical detector of various configurations. The evolution of the eye has been and still is a mystery.   In National Geogr...

#FacesofPhotonics: NASA Intern Elaine Stewart

MIRROR, MIRROR: Elaine with the JWST at Goddard Space  Flight Center in Greenbelt, Maryland Meet Elaine Stewart: chemical engineering student, world-traveler, intern at NASA's Goddard Space Flight Center, and this week's SPIE Face of Photonics. Elaine is fascinated by space exploration and how optics impacts our ability to "study distant stars that have never been seen before." Her research has taken her around the world -- from Bochum, Germany, where she studied material science and engineering at Ruhr-Universität, to Houston, Texas, to work on the James Webb Space Telescope (JWST) while it was under cryogenic vacuum chamber testing, to Melbourne, Australia, where she studied biochemical and product engineering at the University of Melbourne in 2017. And, when she's not busy traversing the globe, she is focusing on graduating from the University of Delaware in 2019 with a Bachelor's in Chemical Engineering. Elaine makes a point of remaining an active...